Cargando…

Suppression of Metastatic Melanoma Growth in Lung by Modulated Electro-Hyperthermia Monitored by a Minimally Invasive Heat Stress Testing Approach in Mice

SIMPLE SUMMARY: The lung is the most frequent site of distant melanoma metastases. Metastases of melanoma in the lungs offer a very poor prognosis, with a 5-year survival rate of below 10%. Hyperthermic therapies including modulated electro-hyperthermia (mEHT) in clinical settings have been used to...

Descripción completa

Detalles Bibliográficos
Autores principales: Thomas, Mbuotidem Jeremiah, Major, Enikő, Benedek, Anett, Horváth, Ildikó, Máthé, Domokos, Bergmann, Ralf, Szász, Attila Marcell, Krenács, Tibor, Benyó, Zoltán
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767533/
https://www.ncbi.nlm.nih.gov/pubmed/33371498
http://dx.doi.org/10.3390/cancers12123872
Descripción
Sumario:SIMPLE SUMMARY: The lung is the most frequent site of distant melanoma metastases. Metastases of melanoma in the lungs offer a very poor prognosis, with a 5-year survival rate of below 10%. Hyperthermic therapies including modulated electro-hyperthermia (mEHT) in clinical settings have been used to improve the efficacy of radiotherapy, chemotherapy, and immunotherapy of tumors. In this study, we focused primarily on the optimization of mEHT for targeted lung treatment of mice lungs burdened with B16F10 melanoma pulmonary metastases, with a particular focus on elucidating the mechanism of action of mEHT on treated melanoma cells while investigating any potential treatment-related side effects on normal lung tissue. mEHT showed evidence of significant anti-tumor effects as demonstrated by the reduced number of pulmonary metastatic nodules, DNA damage response, downregulation of Ki67 expression, higher immune cell infiltration, and upregulation of p21(waf1) expression in mEHT-treated tumors. ABSTRACT: Modulated electro-hyperthermia (mEHT) is a novel complementary therapy in oncology which is based on the higher conductivity and permittivity of cancerous tissues due to their enhanced glycolytic activity and ionic content compared to healthy normal tissues. We aimed to evaluate the potential of mEHT, inducing local hyperthermia, in the treatment of pulmonary metastatic melanoma. Our primary objective was the optimization of mEHT for targeted lung treatment as well as to identify the mechanism of its potential anti-tumor effect in the B16F10 mouse melanoma pulmonary metastases model while investigating the potential treatment-related side effects of mEHT on normal lung tissue. Repeated treatment of tumor-bearing lungs with mEHT induced significant anti-tumor effects as demonstrated by the lower number of tumor nodules and the downregulation of Ki67 expression in treated tumor cells. mEHT treatment provoked significant DNA double-strand breaks indicated by the increased expression of phosphorylated H2AX protein in treated tumors, although treatment-induced elevation of cleaved/activated caspase-3 expression was insignificant, suggesting the minimal role of apoptosis in this process. The mEHT-related significant increase in p21(waf1) positive tumor cells suggested that p21(waf1)-mediated cell cycle arrest plays an important role in the anti-tumor effect of mEHT on melanoma metastases. Significantly increased CD3+, CD8+ T-lymphocytes, and F4/80+CD11b+ macrophage density in the whole lung and tumor of treated animals emphasizes the mobilizing capability of mEHT on immune cells. In conclusion, mEHT can reduce the growth potential of melanoma, thus offering itself as a complementary therapeutic option to chemo- and/or radiotherapy.