Cargando…

CircPlekha7 plays an anti-fibrotic role in intrauterine adhesions by modulating endometrial stromal cell proliferation and apoptosis

Circular RNA (circRNA) plays a key role in the development and progression of several diseases; however, its role in intrauterine adhesions (IUAs) is not well understood. This study aims to investigate the expression profiles and potential role of circRNA in IUA. RNA-sequencing was performed to scre...

Descripción completa

Detalles Bibliográficos
Autores principales: XIE, Wei, HE, Min, LIU, Yuhuan, HUANG, Xiaowu, SONG, Dongmei, XIAO, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Society for Reproduction and Development 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768166/
https://www.ncbi.nlm.nih.gov/pubmed/32801258
http://dx.doi.org/10.1262/jrd.2019-165
_version_ 1783629103940763648
author XIE, Wei
HE, Min
LIU, Yuhuan
HUANG, Xiaowu
SONG, Dongmei
XIAO, Yu
author_facet XIE, Wei
HE, Min
LIU, Yuhuan
HUANG, Xiaowu
SONG, Dongmei
XIAO, Yu
author_sort XIE, Wei
collection PubMed
description Circular RNA (circRNA) plays a key role in the development and progression of several diseases; however, its role in intrauterine adhesions (IUAs) is not well understood. This study aims to investigate the expression profiles and potential role of circRNA in IUA. RNA-sequencing was performed to screen for abnormally expressed circRNAs in TGF-β1-induced IUA endometrial stromal cell (ESC) model (IUA group) and an SMAD3 inhibitor, SIS3-treated IUA ESC model (SIS3 group). Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to uncover the key functions and pathways. Interaction networks were constructed and analyzed based on the competing endogenous RNA hypothesis of circRNA. CircRNAs were validated by Sanger sequencing and quantitative polymerase chain reaction (qPCR). Cell proliferation and apoptosis were measured using MTS and flow cytometry, respectively. The protein and mRNA expression levels of fibrosis-related proteins were measured using western blotting and reverse transcription–qPCR, respectively. A total of 66 circRNAs were differentially expressed between the IUA and SIS3 groups. CircPlekha7 was identified as one of the significantly upregulated circRNAs in the SIS3 group. Overexpression of circPlekha7 enhanced apoptosis, decreased the viability of ESCs, and suppressed the expression of α-SMA, collagen I, and SMAD3 in ESCs; whereas knockdown of circPlekha7 exhibited opposite results. Altogether, the results indicate that circPlekha7 plays an anti-fibrotic role in IUA and may serve as a promising prognostic biomarker for patients with IUA. Therefore, overexpression of circPlekha7 could be a potential treatment strategy for IUA.
format Online
Article
Text
id pubmed-7768166
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Society for Reproduction and Development
record_format MEDLINE/PubMed
spelling pubmed-77681662020-12-31 CircPlekha7 plays an anti-fibrotic role in intrauterine adhesions by modulating endometrial stromal cell proliferation and apoptosis XIE, Wei HE, Min LIU, Yuhuan HUANG, Xiaowu SONG, Dongmei XIAO, Yu J Reprod Dev Original Article Circular RNA (circRNA) plays a key role in the development and progression of several diseases; however, its role in intrauterine adhesions (IUAs) is not well understood. This study aims to investigate the expression profiles and potential role of circRNA in IUA. RNA-sequencing was performed to screen for abnormally expressed circRNAs in TGF-β1-induced IUA endometrial stromal cell (ESC) model (IUA group) and an SMAD3 inhibitor, SIS3-treated IUA ESC model (SIS3 group). Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to uncover the key functions and pathways. Interaction networks were constructed and analyzed based on the competing endogenous RNA hypothesis of circRNA. CircRNAs were validated by Sanger sequencing and quantitative polymerase chain reaction (qPCR). Cell proliferation and apoptosis were measured using MTS and flow cytometry, respectively. The protein and mRNA expression levels of fibrosis-related proteins were measured using western blotting and reverse transcription–qPCR, respectively. A total of 66 circRNAs were differentially expressed between the IUA and SIS3 groups. CircPlekha7 was identified as one of the significantly upregulated circRNAs in the SIS3 group. Overexpression of circPlekha7 enhanced apoptosis, decreased the viability of ESCs, and suppressed the expression of α-SMA, collagen I, and SMAD3 in ESCs; whereas knockdown of circPlekha7 exhibited opposite results. Altogether, the results indicate that circPlekha7 plays an anti-fibrotic role in IUA and may serve as a promising prognostic biomarker for patients with IUA. Therefore, overexpression of circPlekha7 could be a potential treatment strategy for IUA. The Society for Reproduction and Development 2020-08-15 2020-12 /pmc/articles/PMC7768166/ /pubmed/32801258 http://dx.doi.org/10.1262/jrd.2019-165 Text en ©2020 Society for Reproduction and Development This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
spellingShingle Original Article
XIE, Wei
HE, Min
LIU, Yuhuan
HUANG, Xiaowu
SONG, Dongmei
XIAO, Yu
CircPlekha7 plays an anti-fibrotic role in intrauterine adhesions by modulating endometrial stromal cell proliferation and apoptosis
title CircPlekha7 plays an anti-fibrotic role in intrauterine adhesions by modulating endometrial stromal cell proliferation and apoptosis
title_full CircPlekha7 plays an anti-fibrotic role in intrauterine adhesions by modulating endometrial stromal cell proliferation and apoptosis
title_fullStr CircPlekha7 plays an anti-fibrotic role in intrauterine adhesions by modulating endometrial stromal cell proliferation and apoptosis
title_full_unstemmed CircPlekha7 plays an anti-fibrotic role in intrauterine adhesions by modulating endometrial stromal cell proliferation and apoptosis
title_short CircPlekha7 plays an anti-fibrotic role in intrauterine adhesions by modulating endometrial stromal cell proliferation and apoptosis
title_sort circplekha7 plays an anti-fibrotic role in intrauterine adhesions by modulating endometrial stromal cell proliferation and apoptosis
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768166/
https://www.ncbi.nlm.nih.gov/pubmed/32801258
http://dx.doi.org/10.1262/jrd.2019-165
work_keys_str_mv AT xiewei circplekha7playsanantifibroticroleinintrauterineadhesionsbymodulatingendometrialstromalcellproliferationandapoptosis
AT hemin circplekha7playsanantifibroticroleinintrauterineadhesionsbymodulatingendometrialstromalcellproliferationandapoptosis
AT liuyuhuan circplekha7playsanantifibroticroleinintrauterineadhesionsbymodulatingendometrialstromalcellproliferationandapoptosis
AT huangxiaowu circplekha7playsanantifibroticroleinintrauterineadhesionsbymodulatingendometrialstromalcellproliferationandapoptosis
AT songdongmei circplekha7playsanantifibroticroleinintrauterineadhesionsbymodulatingendometrialstromalcellproliferationandapoptosis
AT xiaoyu circplekha7playsanantifibroticroleinintrauterineadhesionsbymodulatingendometrialstromalcellproliferationandapoptosis