Cargando…

Non-Coding RNAs as Prognostic Biomarkers: A miRNA Signature Specific for Aggressive Early-Stage Lung Adenocarcinomas

Lung cancer burden can be reduced by adopting primary and secondary prevention strategies such as anti-smoking campaigns and low-dose CT screening for high risk subjects (aged >50 and smokers >30 packs/year). Recent CT screening trials demonstrated a stage-shift towards earlier stage lung canc...

Descripción completa

Detalles Bibliográficos
Autores principales: Dama, Elisa, Melocchi, Valentina, Mazzarelli, Francesco, Colangelo, Tommaso, Cuttano, Roberto, Di Candia, Leonarda, Ferretti, Gian Maria, Taurchini, Marco, Graziano, Paolo, Bianchi, Fabrizio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768474/
https://www.ncbi.nlm.nih.gov/pubmed/33333738
http://dx.doi.org/10.3390/ncrna6040048
Descripción
Sumario:Lung cancer burden can be reduced by adopting primary and secondary prevention strategies such as anti-smoking campaigns and low-dose CT screening for high risk subjects (aged >50 and smokers >30 packs/year). Recent CT screening trials demonstrated a stage-shift towards earlier stage lung cancer and reduction of mortality (~20%). However, a sizable fraction of patients (30–50%) with early stage disease still experience relapse and an adverse prognosis. Thus, the identification of effective prognostic biomarkers in stage I lung cancer is nowadays paramount. Here, we applied a multi-tiered approach relying on coupled RNA-seq and miRNA-seq data analysis of a large cohort of lung cancer patients (TCGA-LUAD, n = 510), which enabled us to identify prognostic miRNA signatures in stage I lung adenocarcinoma. Such signatures showed high accuracy (AUC ranging between 0.79 and 0.85) in scoring aggressive disease. Importantly, using a network-based approach we rewired miRNA-mRNA regulatory networks, identifying a minimal signature of 7 miRNAs, which was validated in a cohort of FFPE lung adenocarcinoma samples (CSS, n = 44) and controls a variety of genes overlapping with cancer relevant pathways. Our results further demonstrate the reliability of miRNA-based biomarkers for lung cancer prognostication and make a step forward to the application of miRNA biomarkers in the clinical routine.