Cargando…
Deep learning detection of informative features in tau PET for Alzheimer’s disease classification
BACKGROUND: Alzheimer’s disease (AD) is the most common type of dementia, typically characterized by memory loss followed by progressive cognitive decline and functional impairment. Many clinical trials of potential therapies for AD have failed, and there is currently no approved disease-modifying t...
Autores principales: | Jo, Taeho, Nho, Kwangsik, Risacher, Shannon L., Saykin, Andrew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768646/ https://www.ncbi.nlm.nih.gov/pubmed/33371874 http://dx.doi.org/10.1186/s12859-020-03848-0 |
Ejemplares similares
-
Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data
por: Jo, Taeho, et al.
Publicado: (2019) -
Circular-SWAT for deep learning based diagnostic classification of Alzheimer's disease: application to metabolome data
por: Jo, Taeho, et al.
Publicado: (2023) -
Association of the top 20 Alzheimer's disease risk genes with [(18)F]flortaucipir PET
por: Stage, Eddie, et al.
Publicado: (2022) -
Myelin repair in Alzheimer’s disease: a review of biological pathways and potential therapeutics
por: Hirschfeld, Lauren Rose, et al.
Publicado: (2022) -
Genome-Wide Association Analysis across Endophenotypes in Alzheimer’s Disease: Main Effects and Disease Stage-Specific Interactions
por: Rosewood, Thea J., et al.
Publicado: (2023)