Cargando…
Compositional zero-inflated network estimation for microbiome data
BACKGROUND: The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abu...
Autores principales: | Ha, Min Jin, Kim, Junghi, Galloway-Peña, Jessica, Do, Kim-Anh, Peterson, Christine B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768662/ https://www.ncbi.nlm.nih.gov/pubmed/33371887 http://dx.doi.org/10.1186/s12859-020-03911-w |
Ejemplares similares
-
Powerful and robust non-parametric association testing for microbiome data via a zero-inflated quantile approach (ZINQ)
por: Ling, Wodan, et al.
Publicado: (2021) -
Performance determinants of unsupervised clustering methods for microbiome data
por: Shi, Yushu, et al.
Publicado: (2022) -
Identification of microbial interaction network: zero-inflated latent Ising model based approach
por: Zhou, Jie, et al.
Publicado: (2020) -
Assessment and Selection of Competing Models for Zero-Inflated Microbiome Data
por: Xu, Lizhen, et al.
Publicado: (2015) -
Zero problems with compositional data of physical behaviors: a comparison of three zero replacement methods
por: Rasmussen, Charlotte Lund, et al.
Publicado: (2020)