Cargando…
Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities
Hydrothermally active submarine volcanoes are mineral-rich biological oases contributing significantly to chemical fluxes in the deep sea, yet little is known about the microbial communities inhabiting these systems. Here we investigate the diversity of microbial life in hydrothermal deposits and th...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768687/ https://www.ncbi.nlm.nih.gov/pubmed/33277434 http://dx.doi.org/10.1073/pnas.2019021117 |
_version_ | 1783629205663121408 |
---|---|
author | Reysenbach, Anna-Louise St. John, Emily Meneghin, Jennifer Flores, Gilberto E. Podar, Mircea Dombrowski, Nina Spang, Anja L’Haridon, Stephane Humphris, Susan E. de Ronde, Cornel E. J. Caratori Tontini, Fabio Tivey, Maurice Stucker, Valerie K. Stewart, Lucy C. Diehl, Alexander Bach, Wolfgang |
author_facet | Reysenbach, Anna-Louise St. John, Emily Meneghin, Jennifer Flores, Gilberto E. Podar, Mircea Dombrowski, Nina Spang, Anja L’Haridon, Stephane Humphris, Susan E. de Ronde, Cornel E. J. Caratori Tontini, Fabio Tivey, Maurice Stucker, Valerie K. Stewart, Lucy C. Diehl, Alexander Bach, Wolfgang |
author_sort | Reysenbach, Anna-Louise |
collection | PubMed |
description | Hydrothermally active submarine volcanoes are mineral-rich biological oases contributing significantly to chemical fluxes in the deep sea, yet little is known about the microbial communities inhabiting these systems. Here we investigate the diversity of microbial life in hydrothermal deposits and their metagenomics-inferred physiology in light of the geological history and resulting hydrothermal fluid paths in the subsurface of Brothers submarine volcano north of New Zealand on the southern Kermadec arc. From metagenome-assembled genomes we identified over 90 putative bacterial and archaeal genomic families and nearly 300 previously unknown genera, many potentially endemic to this submarine volcanic environment. While magmatically influenced hydrothermal systems on the volcanic resurgent cones of Brothers volcano harbor communities of thermoacidophiles and diverse members of the superphylum “DPANN,” two distinct communities are associated with the caldera wall, likely shaped by two different types of hydrothermal circulation. The communities whose phylogenetic diversity primarily aligns with that of the cone sites and magmatically influenced hydrothermal systems elsewhere are characterized predominately by anaerobic metabolisms. These populations are probably maintained by fluids with greater magmatic inputs that have interacted with different (deeper) previously altered mineral assemblages. However, proximal (a few meters distant) communities with gene-inferred aerobic, microaerophilic, and anaerobic metabolisms are likely supported by shallower seawater-dominated circulation. Furthermore, mixing of fluids from these two distinct hydrothermal circulation systems may have an underlying imprint on the high microbial phylogenomic diversity. Collectively our results highlight the importance of considering geologic evolution and history of subsurface processes in studying microbial colonization and community dynamics in volcanic environments. |
format | Online Article Text |
id | pubmed-7768687 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-77686872021-01-11 Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities Reysenbach, Anna-Louise St. John, Emily Meneghin, Jennifer Flores, Gilberto E. Podar, Mircea Dombrowski, Nina Spang, Anja L’Haridon, Stephane Humphris, Susan E. de Ronde, Cornel E. J. Caratori Tontini, Fabio Tivey, Maurice Stucker, Valerie K. Stewart, Lucy C. Diehl, Alexander Bach, Wolfgang Proc Natl Acad Sci U S A Biological Sciences Hydrothermally active submarine volcanoes are mineral-rich biological oases contributing significantly to chemical fluxes in the deep sea, yet little is known about the microbial communities inhabiting these systems. Here we investigate the diversity of microbial life in hydrothermal deposits and their metagenomics-inferred physiology in light of the geological history and resulting hydrothermal fluid paths in the subsurface of Brothers submarine volcano north of New Zealand on the southern Kermadec arc. From metagenome-assembled genomes we identified over 90 putative bacterial and archaeal genomic families and nearly 300 previously unknown genera, many potentially endemic to this submarine volcanic environment. While magmatically influenced hydrothermal systems on the volcanic resurgent cones of Brothers volcano harbor communities of thermoacidophiles and diverse members of the superphylum “DPANN,” two distinct communities are associated with the caldera wall, likely shaped by two different types of hydrothermal circulation. The communities whose phylogenetic diversity primarily aligns with that of the cone sites and magmatically influenced hydrothermal systems elsewhere are characterized predominately by anaerobic metabolisms. These populations are probably maintained by fluids with greater magmatic inputs that have interacted with different (deeper) previously altered mineral assemblages. However, proximal (a few meters distant) communities with gene-inferred aerobic, microaerophilic, and anaerobic metabolisms are likely supported by shallower seawater-dominated circulation. Furthermore, mixing of fluids from these two distinct hydrothermal circulation systems may have an underlying imprint on the high microbial phylogenomic diversity. Collectively our results highlight the importance of considering geologic evolution and history of subsurface processes in studying microbial colonization and community dynamics in volcanic environments. National Academy of Sciences 2020-12-22 2020-12-04 /pmc/articles/PMC7768687/ /pubmed/33277434 http://dx.doi.org/10.1073/pnas.2019021117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Reysenbach, Anna-Louise St. John, Emily Meneghin, Jennifer Flores, Gilberto E. Podar, Mircea Dombrowski, Nina Spang, Anja L’Haridon, Stephane Humphris, Susan E. de Ronde, Cornel E. J. Caratori Tontini, Fabio Tivey, Maurice Stucker, Valerie K. Stewart, Lucy C. Diehl, Alexander Bach, Wolfgang Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities |
title | Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities |
title_full | Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities |
title_fullStr | Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities |
title_full_unstemmed | Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities |
title_short | Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities |
title_sort | complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768687/ https://www.ncbi.nlm.nih.gov/pubmed/33277434 http://dx.doi.org/10.1073/pnas.2019021117 |
work_keys_str_mv | AT reysenbachannalouise complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities AT stjohnemily complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities AT meneghinjennifer complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities AT floresgilbertoe complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities AT podarmircea complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities AT dombrowskinina complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities AT spanganja complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities AT lharidonstephane complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities AT humphrissusane complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities AT derondecornelej complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities AT caratoritontinifabio complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities AT tiveymaurice complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities AT stuckervaleriek complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities AT stewartlucyc complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities AT diehlalexander complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities AT bachwolfgang complexsubsurfacehydrothermalfluidmixingatasubmarinearcvolcanosupportsdistinctandhighlydiversemicrobialcommunities |