Cargando…

Nanopore native RNA sequencing of a human poly(A) transcriptome

High throughput cDNA sequencing technologies have advanced our understanding of transcriptome complexity and regulation. However, these methods lose information contained in biological RNA because the copied reads are often short and because modifications are not retained. We address these limitatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Workman, Rachael E., Tang, Alison D., Tang, Paul S., Jain, Miten, Tyson, John R., Razaghi, Roham, Zuzarte, Philip C., Gilpatrick, Timothy, Payne, Alexander, Quick, Joshua, Sadowski, Norah, Holmes, Nadine, de Jesus, Jaqueline Goes, Jones, Karen L., Soulette, Cameron M., Snutch, Terrance P., Loman, Nicholas, Paten, Benedict, Loose, Matthew, Simpson, Jared T., Olsen, Hugh E., Brooks, Angela N., Akeson, Mark, Timp, Winston
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768885/
https://www.ncbi.nlm.nih.gov/pubmed/31740818
http://dx.doi.org/10.1038/s41592-019-0617-2
_version_ 1783629229800292352
author Workman, Rachael E.
Tang, Alison D.
Tang, Paul S.
Jain, Miten
Tyson, John R.
Razaghi, Roham
Zuzarte, Philip C.
Gilpatrick, Timothy
Payne, Alexander
Quick, Joshua
Sadowski, Norah
Holmes, Nadine
de Jesus, Jaqueline Goes
Jones, Karen L.
Soulette, Cameron M.
Snutch, Terrance P.
Loman, Nicholas
Paten, Benedict
Loose, Matthew
Simpson, Jared T.
Olsen, Hugh E.
Brooks, Angela N.
Akeson, Mark
Timp, Winston
author_facet Workman, Rachael E.
Tang, Alison D.
Tang, Paul S.
Jain, Miten
Tyson, John R.
Razaghi, Roham
Zuzarte, Philip C.
Gilpatrick, Timothy
Payne, Alexander
Quick, Joshua
Sadowski, Norah
Holmes, Nadine
de Jesus, Jaqueline Goes
Jones, Karen L.
Soulette, Cameron M.
Snutch, Terrance P.
Loman, Nicholas
Paten, Benedict
Loose, Matthew
Simpson, Jared T.
Olsen, Hugh E.
Brooks, Angela N.
Akeson, Mark
Timp, Winston
author_sort Workman, Rachael E.
collection PubMed
description High throughput cDNA sequencing technologies have advanced our understanding of transcriptome complexity and regulation. However, these methods lose information contained in biological RNA because the copied reads are often short and because modifications are not retained. We address these limitations using a native poly(A) RNA sequencing strategy developed by Oxford Nanopore Technologies (ONT). Our study generated 9.9 million aligned sequence reads for the human cell line GM12878, using thirty MinION flow cells at six institutions. These native RNA reads had a median length of 771 bases, and a maximum aligned length of over 21,000 bases. Mitochondrial poly(A) reads provided an internal measure of read length quality. We combined these long nanopore reads with higher accuracy short-reads and annotated GM12878 promoter regions, to identify 33,984 plausible RNA isoforms. We describe strategies for assessing 3′ poly(A) tail length, base modifications, and transcript haplotypes.
format Online
Article
Text
id pubmed-7768885
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-77688852020-12-28 Nanopore native RNA sequencing of a human poly(A) transcriptome Workman, Rachael E. Tang, Alison D. Tang, Paul S. Jain, Miten Tyson, John R. Razaghi, Roham Zuzarte, Philip C. Gilpatrick, Timothy Payne, Alexander Quick, Joshua Sadowski, Norah Holmes, Nadine de Jesus, Jaqueline Goes Jones, Karen L. Soulette, Cameron M. Snutch, Terrance P. Loman, Nicholas Paten, Benedict Loose, Matthew Simpson, Jared T. Olsen, Hugh E. Brooks, Angela N. Akeson, Mark Timp, Winston Nat Methods Article High throughput cDNA sequencing technologies have advanced our understanding of transcriptome complexity and regulation. However, these methods lose information contained in biological RNA because the copied reads are often short and because modifications are not retained. We address these limitations using a native poly(A) RNA sequencing strategy developed by Oxford Nanopore Technologies (ONT). Our study generated 9.9 million aligned sequence reads for the human cell line GM12878, using thirty MinION flow cells at six institutions. These native RNA reads had a median length of 771 bases, and a maximum aligned length of over 21,000 bases. Mitochondrial poly(A) reads provided an internal measure of read length quality. We combined these long nanopore reads with higher accuracy short-reads and annotated GM12878 promoter regions, to identify 33,984 plausible RNA isoforms. We describe strategies for assessing 3′ poly(A) tail length, base modifications, and transcript haplotypes. 2019-11-18 2019-12 /pmc/articles/PMC7768885/ /pubmed/31740818 http://dx.doi.org/10.1038/s41592-019-0617-2 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Workman, Rachael E.
Tang, Alison D.
Tang, Paul S.
Jain, Miten
Tyson, John R.
Razaghi, Roham
Zuzarte, Philip C.
Gilpatrick, Timothy
Payne, Alexander
Quick, Joshua
Sadowski, Norah
Holmes, Nadine
de Jesus, Jaqueline Goes
Jones, Karen L.
Soulette, Cameron M.
Snutch, Terrance P.
Loman, Nicholas
Paten, Benedict
Loose, Matthew
Simpson, Jared T.
Olsen, Hugh E.
Brooks, Angela N.
Akeson, Mark
Timp, Winston
Nanopore native RNA sequencing of a human poly(A) transcriptome
title Nanopore native RNA sequencing of a human poly(A) transcriptome
title_full Nanopore native RNA sequencing of a human poly(A) transcriptome
title_fullStr Nanopore native RNA sequencing of a human poly(A) transcriptome
title_full_unstemmed Nanopore native RNA sequencing of a human poly(A) transcriptome
title_short Nanopore native RNA sequencing of a human poly(A) transcriptome
title_sort nanopore native rna sequencing of a human poly(a) transcriptome
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768885/
https://www.ncbi.nlm.nih.gov/pubmed/31740818
http://dx.doi.org/10.1038/s41592-019-0617-2
work_keys_str_mv AT workmanrachaele nanoporenativernasequencingofahumanpolyatranscriptome
AT tangalisond nanoporenativernasequencingofahumanpolyatranscriptome
AT tangpauls nanoporenativernasequencingofahumanpolyatranscriptome
AT jainmiten nanoporenativernasequencingofahumanpolyatranscriptome
AT tysonjohnr nanoporenativernasequencingofahumanpolyatranscriptome
AT razaghiroham nanoporenativernasequencingofahumanpolyatranscriptome
AT zuzartephilipc nanoporenativernasequencingofahumanpolyatranscriptome
AT gilpatricktimothy nanoporenativernasequencingofahumanpolyatranscriptome
AT paynealexander nanoporenativernasequencingofahumanpolyatranscriptome
AT quickjoshua nanoporenativernasequencingofahumanpolyatranscriptome
AT sadowskinorah nanoporenativernasequencingofahumanpolyatranscriptome
AT holmesnadine nanoporenativernasequencingofahumanpolyatranscriptome
AT dejesusjaquelinegoes nanoporenativernasequencingofahumanpolyatranscriptome
AT joneskarenl nanoporenativernasequencingofahumanpolyatranscriptome
AT soulettecameronm nanoporenativernasequencingofahumanpolyatranscriptome
AT snutchterrancep nanoporenativernasequencingofahumanpolyatranscriptome
AT lomannicholas nanoporenativernasequencingofahumanpolyatranscriptome
AT patenbenedict nanoporenativernasequencingofahumanpolyatranscriptome
AT loosematthew nanoporenativernasequencingofahumanpolyatranscriptome
AT simpsonjaredt nanoporenativernasequencingofahumanpolyatranscriptome
AT olsenhughe nanoporenativernasequencingofahumanpolyatranscriptome
AT brooksangelan nanoporenativernasequencingofahumanpolyatranscriptome
AT akesonmark nanoporenativernasequencingofahumanpolyatranscriptome
AT timpwinston nanoporenativernasequencingofahumanpolyatranscriptome