Cargando…

A microalgal‐based preparation with synergistic cellulolytic and detoxifying action towards chemical‐treated lignocellulose

High‐temperature bioconversion of lignocellulose into fermentable sugars has drawn attention for efficient production of renewable chemicals and biofuels, because competing microbial activities are inhibited at elevated temperatures and thermostable cell wall degrading enzymes are superior to mesoph...

Descripción completa

Detalles Bibliográficos
Autores principales: Benedetti, Manuel, Barera, Simone, Longoni, Paolo, Guardini, Zeno, Herrero Garcia, Natalia, Bolzonella, David, Lopez‐Arredondo, Damar, Herrera‐Estrella, Luis, Goldschmidt‐Clermont, Michel, Bassi, Roberto, Dall’Osto, Luca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7769238/
https://www.ncbi.nlm.nih.gov/pubmed/32649019
http://dx.doi.org/10.1111/pbi.13447
_version_ 1783629278872600576
author Benedetti, Manuel
Barera, Simone
Longoni, Paolo
Guardini, Zeno
Herrero Garcia, Natalia
Bolzonella, David
Lopez‐Arredondo, Damar
Herrera‐Estrella, Luis
Goldschmidt‐Clermont, Michel
Bassi, Roberto
Dall’Osto, Luca
author_facet Benedetti, Manuel
Barera, Simone
Longoni, Paolo
Guardini, Zeno
Herrero Garcia, Natalia
Bolzonella, David
Lopez‐Arredondo, Damar
Herrera‐Estrella, Luis
Goldschmidt‐Clermont, Michel
Bassi, Roberto
Dall’Osto, Luca
author_sort Benedetti, Manuel
collection PubMed
description High‐temperature bioconversion of lignocellulose into fermentable sugars has drawn attention for efficient production of renewable chemicals and biofuels, because competing microbial activities are inhibited at elevated temperatures and thermostable cell wall degrading enzymes are superior to mesophilic enzymes. Here, we report on the development of a platform to produce four different thermostable cell wall degrading enzymes in the chloroplast of Chlamydomonas reinhardtii. The enzyme blend was composed of the cellobiohydrolase CBM3GH5 from C. saccharolyticus, the β‐glucosidase celB from P. furiosus, the endoglucanase B and the endoxylanase XynA from T. neapolitana. In addition, transplastomic microalgae were engineered for the expression of phosphite dehydrogenase D from Pseudomonas stutzeri, allowing for growth in non‐axenic media by selective phosphite nutrition. The cellulolytic blend composed of the glycoside hydrolase (GH) domain GH12/GH5/GH1 allowed the conversion of alkaline‐treated lignocellulose into glucose with efficiencies ranging from 14% to 17% upon 48h of reaction and an enzyme loading of 0.05% (w/w). Hydrolysates from treated cellulosic materials with extracts of transgenic microalgae boosted both the biogas production by methanogenic bacteria and the mixotrophic growth of the oleaginous microalga Chlorella vulgaris. Notably, microalgal treatment suppressed the detrimental effect of inhibitory by‐products released from the alkaline treatment of biomass, thus allowing for efficient assimilation of lignocellulose‐derived sugars by C. vulgaris under mixotrophic growth.
format Online
Article
Text
id pubmed-7769238
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-77692382020-12-30 A microalgal‐based preparation with synergistic cellulolytic and detoxifying action towards chemical‐treated lignocellulose Benedetti, Manuel Barera, Simone Longoni, Paolo Guardini, Zeno Herrero Garcia, Natalia Bolzonella, David Lopez‐Arredondo, Damar Herrera‐Estrella, Luis Goldschmidt‐Clermont, Michel Bassi, Roberto Dall’Osto, Luca Plant Biotechnol J Research Articles High‐temperature bioconversion of lignocellulose into fermentable sugars has drawn attention for efficient production of renewable chemicals and biofuels, because competing microbial activities are inhibited at elevated temperatures and thermostable cell wall degrading enzymes are superior to mesophilic enzymes. Here, we report on the development of a platform to produce four different thermostable cell wall degrading enzymes in the chloroplast of Chlamydomonas reinhardtii. The enzyme blend was composed of the cellobiohydrolase CBM3GH5 from C. saccharolyticus, the β‐glucosidase celB from P. furiosus, the endoglucanase B and the endoxylanase XynA from T. neapolitana. In addition, transplastomic microalgae were engineered for the expression of phosphite dehydrogenase D from Pseudomonas stutzeri, allowing for growth in non‐axenic media by selective phosphite nutrition. The cellulolytic blend composed of the glycoside hydrolase (GH) domain GH12/GH5/GH1 allowed the conversion of alkaline‐treated lignocellulose into glucose with efficiencies ranging from 14% to 17% upon 48h of reaction and an enzyme loading of 0.05% (w/w). Hydrolysates from treated cellulosic materials with extracts of transgenic microalgae boosted both the biogas production by methanogenic bacteria and the mixotrophic growth of the oleaginous microalga Chlorella vulgaris. Notably, microalgal treatment suppressed the detrimental effect of inhibitory by‐products released from the alkaline treatment of biomass, thus allowing for efficient assimilation of lignocellulose‐derived sugars by C. vulgaris under mixotrophic growth. John Wiley and Sons Inc. 2020-09-02 2021-01 /pmc/articles/PMC7769238/ /pubmed/32649019 http://dx.doi.org/10.1111/pbi.13447 Text en © 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Benedetti, Manuel
Barera, Simone
Longoni, Paolo
Guardini, Zeno
Herrero Garcia, Natalia
Bolzonella, David
Lopez‐Arredondo, Damar
Herrera‐Estrella, Luis
Goldschmidt‐Clermont, Michel
Bassi, Roberto
Dall’Osto, Luca
A microalgal‐based preparation with synergistic cellulolytic and detoxifying action towards chemical‐treated lignocellulose
title A microalgal‐based preparation with synergistic cellulolytic and detoxifying action towards chemical‐treated lignocellulose
title_full A microalgal‐based preparation with synergistic cellulolytic and detoxifying action towards chemical‐treated lignocellulose
title_fullStr A microalgal‐based preparation with synergistic cellulolytic and detoxifying action towards chemical‐treated lignocellulose
title_full_unstemmed A microalgal‐based preparation with synergistic cellulolytic and detoxifying action towards chemical‐treated lignocellulose
title_short A microalgal‐based preparation with synergistic cellulolytic and detoxifying action towards chemical‐treated lignocellulose
title_sort microalgal‐based preparation with synergistic cellulolytic and detoxifying action towards chemical‐treated lignocellulose
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7769238/
https://www.ncbi.nlm.nih.gov/pubmed/32649019
http://dx.doi.org/10.1111/pbi.13447
work_keys_str_mv AT benedettimanuel amicroalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT barerasimone amicroalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT longonipaolo amicroalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT guardinizeno amicroalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT herrerogarcianatalia amicroalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT bolzonelladavid amicroalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT lopezarredondodamar amicroalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT herreraestrellaluis amicroalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT goldschmidtclermontmichel amicroalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT bassiroberto amicroalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT dallostoluca amicroalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT benedettimanuel microalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT barerasimone microalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT longonipaolo microalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT guardinizeno microalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT herrerogarcianatalia microalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT bolzonelladavid microalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT lopezarredondodamar microalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT herreraestrellaluis microalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT goldschmidtclermontmichel microalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT bassiroberto microalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose
AT dallostoluca microalgalbasedpreparationwithsynergisticcellulolyticanddetoxifyingactiontowardschemicaltreatedlignocellulose