Cargando…
Identifying Psychological Symptoms Based on Facial Movements
Background: Many methods have been proposed to automatically identify the presence of mental illness, but these have mostly focused on one specific mental illness. In some non-professional scenarios, it would be more helpful to understand an individual's mental health status from all perspectiv...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7769937/ https://www.ncbi.nlm.nih.gov/pubmed/33384632 http://dx.doi.org/10.3389/fpsyt.2020.607890 |
Sumario: | Background: Many methods have been proposed to automatically identify the presence of mental illness, but these have mostly focused on one specific mental illness. In some non-professional scenarios, it would be more helpful to understand an individual's mental health status from all perspectives. Methods: We recruited 100 participants. Their multi-dimensional psychological symptoms of mental health were evaluated using the Symptom Checklist 90 (SCL-90) and their facial movements under neutral stimulation were recorded using Microsoft Kinect. We extracted the time-series characteristics of the key points as the input, and the subscale scores of the SCL-90 as the output to build facial prediction models. Finally, the convergent validity, discriminant validity, criterion validity, and the split-half reliability were respectively assessed using a multitrait-multimethod matrix and correlation coefficients. Results: The correlation coefficients between the predicted values and actual scores were 0.26 and 0.42 (P < 0.01), which indicated good criterion validity. All models except depression had high convergent validity but low discriminant validity. Results also indicated good levels of split-half reliability for each model [from 0.516 (hostility) to 0.817 (interpersonal sensitivity)] (P < 0.001). Conclusion: The validity and reliability of facial prediction models were confirmed for the measurement of mental health based on the SCL-90. Our research demonstrated that fine-grained aspects of mental health can be identified from the face, and provided a feasible evaluation method for multi-dimensional prediction models. |
---|