Cargando…
Inference of Genetic Networks From Time-Series and Static Gene Expression Data: Combining a Random-Forest-Based Inference Method With Feature Selection Methods
Several researchers have focused on random-forest-based inference methods because of their excellent performance. Some of these inference methods also have a useful ability to analyze both time-series and static gene expression data. However, they are only of use in ranking all of the candidate regu...
Autores principales: | Kimura, Shuhei, Fukutomi, Ryo, Tokuhisa, Masato, Okada, Mariko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770182/ https://www.ncbi.nlm.nih.gov/pubmed/33384716 http://dx.doi.org/10.3389/fgene.2020.595912 |
Ejemplares similares
-
Genetic Network Inference Using Hierarchical Structure
por: Kimura, Shuhei, et al.
Publicado: (2016) -
Experimental assessment of static and dynamic algorithms for gene regulation inference from time series expression data
por: Lopes, Miguel, et al.
Publicado: (2013) -
Inference of Vohradský's Models of Genetic Networks by Solving Two-Dimensional Function Optimization Problems
por: Kimura, Shuhei, et al.
Publicado: (2013) -
Quantitative assessment and validation of network inference methods in bioinformatics
por: Haibe-Kains, Benjamin, et al.
Publicado: (2014) -
Computational methods for analysis and inference of kinase/inhibitor relationships
por: Ferrè, Fabrizio, et al.
Publicado: (2014)