Cargando…
Inhibitory effect of Salvadora persica extract (Miswak) on collagen degradation in demineralized dentin: In vitro study
BACKGROUND/PURPOSE: Root dentin is vulnerable to acid attack, suggesting a higher risk of demineralization than coronal enamel. This study aimed to evaluate the inhibitory effect of Miswak extract on collagen degradation of demineralized dentin lesion. MATERIALS AND METHODS: Demineralized bovine roo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Association for Dental Sciences of the Republic of China
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770310/ https://www.ncbi.nlm.nih.gov/pubmed/33384799 http://dx.doi.org/10.1016/j.jds.2020.05.025 |
Sumario: | BACKGROUND/PURPOSE: Root dentin is vulnerable to acid attack, suggesting a higher risk of demineralization than coronal enamel. This study aimed to evaluate the inhibitory effect of Miswak extract on collagen degradation of demineralized dentin lesion. MATERIALS AND METHODS: Demineralized bovine root dentin specimens were treated for 1 h by 20% Miswak extract and 0.12% Chlorehexidine (CHX) as a positive control group, and then subjected to collagenolytic attack (clostridium histolyticum 0.5 CDU/mL, 16 h). These cyclic treatments were repeated for 3 days. After the cyclic treatment, the images of the specimens were captured with a light microscope and the lesion depth of degraded collagen layer of all specimens was measured. The mean lesion depth was calculated and compared between the groups using descriptive and One-way ANOVA followed by Post hoc Tukey's tests. Significant level was set at p < 0.05. RESULTS: The mean lesion depth of CHX (28.6 ± 3.37 μm) had the least value, followed by Miswak (37.5 ± 4.01 μm) then the control (78.4 ± 18.43 μm) group. There was a significant difference in the mean lesion depth among the three groups (p = 0.000). CONCLUSION: Miswak aqueous extract from S. persica was found to preserve the dentin collagen matrix from collagenase enzyme. This could be due to the organic compounds like flavonoids, saponins, alkaloids, tannins, and others which have been reported in literature. Present finding suggests that Miswak might play a positive effect in dentin caries prevention. |
---|