Cargando…

Urinary bladder reconstruction using autologous collagenous connective tissue membrane “Biosheet®” induced by in-body tissue architecture: A pilot study

INTRODUCTION: In-body tissue architecture (iBTA) technology, based on cell-free tissue engineering, can produces collagenous tissues for implantation by subcutaneous embedding a designed mold. The aim of this study was to evaluate the biocompatibility of iBTA-induced “Biosheet®” collagenous sheets,...

Descripción completa

Detalles Bibliográficos
Autores principales: Iimori, Yasumasa, Iwai, Ryosuke, Nagatani, Kengo, Inoue, Yuka, Funayama-Iwai, Marina, Okamoto, Mari, Nakata, Mio, Mie, Keiichiro, Nishida, Hidetaka, Nakayama, Yasuhide, Akiyoshi, Hideo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Society for Regenerative Medicine 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770416/
https://www.ncbi.nlm.nih.gov/pubmed/33426229
http://dx.doi.org/10.1016/j.reth.2020.10.006
Descripción
Sumario:INTRODUCTION: In-body tissue architecture (iBTA) technology, based on cell-free tissue engineering, can produces collagenous tissues for implantation by subcutaneous embedding a designed mold. The aim of this study was to evaluate the biocompatibility of iBTA-induced “Biosheet®” collagenous sheets, as scaffold materials for bladder reconstruction. METHODS: Canine Biosheet® implants were prepared by embedding molds into subcutaneous pouches in beagles for 8 weeks. A part of canine bladder wall was excised (2 × 2 cm) and repaired by patching the same sized autologous Biosheet®. The Biosheet® implants were harvested 4 weeks (n = 1) and 12 weeks (n = 3) after the implantation and evaluated histologically. RESULTS: No disruption of the patched Biosheet® implants or urinary leakage into the peritoneal cavity was observed during the entire observation periods. There were no signs of chronic inflammation or Biosheet® rejection. The urine-contacting surface of luminal surface of the Biosheet® was covered with a multicellular layer of urothelium cells 4 weeks after implantation. α-SMA-positive muscle cells were observed at the margin of the Biosheet® implants at 12 weeks after the implantation. In addition, in the center of the Biosheet® implants, the formation of microvessels stained as α-SMA-positive was observed. CONCLUSION: Biosheet® implants have biocompatibility as a scaffold for bladder reconstruction, indicating that they may be applicable for full-thickness bladder wall substitution. Further studies are required for definitive evaluation as a scaffold for bladder reconstruction.