Cargando…

Functional Dysconnectivity of Frontal Cortex to Striatum Predicts Ketamine Infusion Response in Treatment-Resistant Depression

BACKGROUND: Frontostriatal disconnectivity plays a crucial role in the pathophysiology of major depressive disorder. However, whether the baseline functional connectivity of the frontostriatal network could predict the treatment outcome of low-dose ketamine infusion remains unknown. METHODS: In tota...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Mu-Hong, Chang, Wan-Chen, Lin, Wei-Chen, Tu, Pei-Chi, Li, Cheng-Ta, Bai, Ya-Mei, Tsai, Shih-Jen, Huang, Wen-Sheng, Su, Tung-Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770518/
https://www.ncbi.nlm.nih.gov/pubmed/32726408
http://dx.doi.org/10.1093/ijnp/pyaa056
Descripción
Sumario:BACKGROUND: Frontostriatal disconnectivity plays a crucial role in the pathophysiology of major depressive disorder. However, whether the baseline functional connectivity of the frontostriatal network could predict the treatment outcome of low-dose ketamine infusion remains unknown. METHODS: In total, 48 patients with treatment-resistant depression were randomly divided into 3 treatment groups (a single-dose 40-minute i.v. infusion) as follows: 0.5 mg/kg ketamine, 0.2 mg/kg ketamine, and saline placebo infusion. Patients were subsequently followed-up for 2 weeks. Resting-state functional magnetic resonance imaging was performed for each patient before infusion administration. In addition, the baseline frontostriatal functional connectivity of patients with treatment-resistant depression was also compared with that of healthy controls. RESULTS: Compared with the healthy controls, patients with treatment-resistant depression had a decreased functional connectivity in the frontostriatal circuits, especially between the right superior frontal cortex and executive region of the striatum and between the right paracingulate cortex and rostral-motor region of the striatum. The baseline hypoconnectivity of the bilateral superior frontal cortex to the executive region of the striatum was associated with a greater reduction of depression symptoms after a single 0.2-mg/kg ketamine infusion. CONCLUSION: Reduced connectivity of the superior frontal cortex to the striatum predicted the response to ketamine infusion among patients with treatment-resistant depression.