Cargando…
On linear dimension reduction based on diagonalization of scatter matrices for bioinformatics downstream analyses
Dimension reduction is often a preliminary step in the analysis of data sets with a large number of variables. Most classical, both supervised and unsupervised, dimension reduction methods such as principal component analysis (PCA), independent component analysis (ICA) or sliced inverse regression (...
Autores principales: | Fischer, Daniel, Nordhausen, Klaus, Oja, Hannu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770551/ https://www.ncbi.nlm.nih.gov/pubmed/33385080 http://dx.doi.org/10.1016/j.heliyon.2020.e05732 |
Ejemplares similares
-
Error bounds for linear complementarity problems of weakly chained diagonally dominant B-matrices
por: Wang, Feng
Publicado: (2017) -
On the diagonalization of principal submatrices of positive-definitive symmetric matrices, pt 1; properties of the diagonal elements
por: Daneels, A
Publicado: (1972) -
Diagonal Limit for Conformal Blocks in d Dimensions
por: Hogervorst, Matthijs, et al.
Publicado: (2013) -
The design and use of algorithms for permuting large entries to the diagonal of sparse matrices
por: Duff, I S, et al.
Publicado: (1997) -
Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices
por: Congedo, Marco, et al.
Publicado: (2015)