Cargando…
Hog1 Controls Lipids Homeostasis Upon Osmotic Stress in Candida albicans
As opportunistic pathogen, Candida albicans adapts to different environmental conditions and its corresponding stress. The Hog1 MAPK (Mitogen Activated Protein Kinase) was identified as the main MAPK involved in the response to osmotic stress. It was later shown that this MAPK is also involved in th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770603/ https://www.ncbi.nlm.nih.gov/pubmed/33321998 http://dx.doi.org/10.3390/jof6040355 |
Sumario: | As opportunistic pathogen, Candida albicans adapts to different environmental conditions and its corresponding stress. The Hog1 MAPK (Mitogen Activated Protein Kinase) was identified as the main MAPK involved in the response to osmotic stress. It was later shown that this MAPK is also involved in the response to a variety of stresses and therefore, its role in virulence, survival to phagocytes and establishment as commensal in the mouse gastrointestinal tract was reported. In this work, the role of Hog1 in osmotic stress is further analyzed, showing that this MAPK is involved in lipid homeostasis. The hog1 mutant accumulates lipid droplets when exposed to osmotic stress, leading to an increase in cell permeability and delaying the endocytic trafficking routes. Cek1, a MAPK also implicated in the response to osmotic challenge, did not play a role in lipid homeostasis indicating that Hog1 is the main MAP kinase in this response. The alteration on lipid metabolism observed in hog1 mutants is proposed to contribute to the sensitivity to osmotic stress. |
---|