Cargando…

Elastic Aerogels of Cellulose Nanofibers@Metal–Organic Frameworks for Thermal Insulation and Fire Retardancy

Metal–organic frameworks (MOFs) with high microporosity and relatively high thermal stability are potential thermal insulation and flame-retardant materials. However, the difficulties in processing and shaping MOFs have largely hampered their applications in these areas. This study outlines the fabr...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Shengyang, Apostolopoulou-Kalkavoura, Varvara, Tavares da Costa, Marcus Vinícius, Bergström, Lennart, Strømme, Maria, Xu, Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770683/
https://www.ncbi.nlm.nih.gov/pubmed/34138073
http://dx.doi.org/10.1007/s40820-019-0343-4
_version_ 1783629559112925184
author Zhou, Shengyang
Apostolopoulou-Kalkavoura, Varvara
Tavares da Costa, Marcus Vinícius
Bergström, Lennart
Strømme, Maria
Xu, Chao
author_facet Zhou, Shengyang
Apostolopoulou-Kalkavoura, Varvara
Tavares da Costa, Marcus Vinícius
Bergström, Lennart
Strømme, Maria
Xu, Chao
author_sort Zhou, Shengyang
collection PubMed
description Metal–organic frameworks (MOFs) with high microporosity and relatively high thermal stability are potential thermal insulation and flame-retardant materials. However, the difficulties in processing and shaping MOFs have largely hampered their applications in these areas. This study outlines the fabrication of hybrid CNF@MOF aerogels by a stepwise assembly approach involving the coating and cross-linking of cellulose nanofibers (CNFs) with continuous nanolayers of MOFs. The cross-linking gives the aerogels high mechanical strength but superelasticity (80% maximum recoverable strain, high specific compression modulus of ~ 200 MPa cm(3) g(−1), and specific stress of ~ 100 MPa cm(3) g(−1)). The resultant lightweight aerogels have a cellular network structure and hierarchical porosity, which render the aerogels with relatively low thermal conductivity of ~ 40 mW m(−1) K(−1). The hydrophobic, thermally stable MOF nanolayers wrapped around the CNFs result in good moisture resistance and fire retardancy. This study demonstrates that MOFs can be used as efficient thermal insulation and flame-retardant materials. It presents a pathway for the design of thermally insulating, superelastic fire-retardant nanocomposites based on MOFs and nanocellulose. [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s40820-019-0343-4) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-7770683
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Springer Singapore
record_format MEDLINE/PubMed
spelling pubmed-77706832021-06-14 Elastic Aerogels of Cellulose Nanofibers@Metal–Organic Frameworks for Thermal Insulation and Fire Retardancy Zhou, Shengyang Apostolopoulou-Kalkavoura, Varvara Tavares da Costa, Marcus Vinícius Bergström, Lennart Strømme, Maria Xu, Chao Nanomicro Lett Article Metal–organic frameworks (MOFs) with high microporosity and relatively high thermal stability are potential thermal insulation and flame-retardant materials. However, the difficulties in processing and shaping MOFs have largely hampered their applications in these areas. This study outlines the fabrication of hybrid CNF@MOF aerogels by a stepwise assembly approach involving the coating and cross-linking of cellulose nanofibers (CNFs) with continuous nanolayers of MOFs. The cross-linking gives the aerogels high mechanical strength but superelasticity (80% maximum recoverable strain, high specific compression modulus of ~ 200 MPa cm(3) g(−1), and specific stress of ~ 100 MPa cm(3) g(−1)). The resultant lightweight aerogels have a cellular network structure and hierarchical porosity, which render the aerogels with relatively low thermal conductivity of ~ 40 mW m(−1) K(−1). The hydrophobic, thermally stable MOF nanolayers wrapped around the CNFs result in good moisture resistance and fire retardancy. This study demonstrates that MOFs can be used as efficient thermal insulation and flame-retardant materials. It presents a pathway for the design of thermally insulating, superelastic fire-retardant nanocomposites based on MOFs and nanocellulose. [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s40820-019-0343-4) contains supplementary material, which is available to authorized users. Springer Singapore 2019-12-19 /pmc/articles/PMC7770683/ /pubmed/34138073 http://dx.doi.org/10.1007/s40820-019-0343-4 Text en © The Author(s) 2019 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Zhou, Shengyang
Apostolopoulou-Kalkavoura, Varvara
Tavares da Costa, Marcus Vinícius
Bergström, Lennart
Strømme, Maria
Xu, Chao
Elastic Aerogels of Cellulose Nanofibers@Metal–Organic Frameworks for Thermal Insulation and Fire Retardancy
title Elastic Aerogels of Cellulose Nanofibers@Metal–Organic Frameworks for Thermal Insulation and Fire Retardancy
title_full Elastic Aerogels of Cellulose Nanofibers@Metal–Organic Frameworks for Thermal Insulation and Fire Retardancy
title_fullStr Elastic Aerogels of Cellulose Nanofibers@Metal–Organic Frameworks for Thermal Insulation and Fire Retardancy
title_full_unstemmed Elastic Aerogels of Cellulose Nanofibers@Metal–Organic Frameworks for Thermal Insulation and Fire Retardancy
title_short Elastic Aerogels of Cellulose Nanofibers@Metal–Organic Frameworks for Thermal Insulation and Fire Retardancy
title_sort elastic aerogels of cellulose nanofibers@metal–organic frameworks for thermal insulation and fire retardancy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770683/
https://www.ncbi.nlm.nih.gov/pubmed/34138073
http://dx.doi.org/10.1007/s40820-019-0343-4
work_keys_str_mv AT zhoushengyang elasticaerogelsofcellulosenanofibersmetalorganicframeworksforthermalinsulationandfireretardancy
AT apostolopouloukalkavouravarvara elasticaerogelsofcellulosenanofibersmetalorganicframeworksforthermalinsulationandfireretardancy
AT tavaresdacostamarcusvinicius elasticaerogelsofcellulosenanofibersmetalorganicframeworksforthermalinsulationandfireretardancy
AT bergstromlennart elasticaerogelsofcellulosenanofibersmetalorganicframeworksforthermalinsulationandfireretardancy
AT strømmemaria elasticaerogelsofcellulosenanofibersmetalorganicframeworksforthermalinsulationandfireretardancy
AT xuchao elasticaerogelsofcellulosenanofibersmetalorganicframeworksforthermalinsulationandfireretardancy