Cargando…
Novel Graphene Biosensor Based on the Functionalization of Multifunctional Nano-bovine Serum Albumin for the Highly Sensitive Detection of Cancer Biomarkers
A simple, convenient, and highly sensitive bio-interface for graphene field-effect transistors (GFETs) based on multifunctional nano-denatured bovine serum albumin (nano-dBSA) functionalization was developed to target cancer biomarkers. The novel graphene–protein bioelectronic interface was construc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770693/ https://www.ncbi.nlm.nih.gov/pubmed/34137997 http://dx.doi.org/10.1007/s40820-019-0250-8 |
_version_ | 1783629561508921344 |
---|---|
author | Zhou, Lin Wang, Kun Sun, Hao Zhao, Simin Chen, Xianfeng Qian, Dahong Mao, Hongju Zhao, Jianlong |
author_facet | Zhou, Lin Wang, Kun Sun, Hao Zhao, Simin Chen, Xianfeng Qian, Dahong Mao, Hongju Zhao, Jianlong |
author_sort | Zhou, Lin |
collection | PubMed |
description | A simple, convenient, and highly sensitive bio-interface for graphene field-effect transistors (GFETs) based on multifunctional nano-denatured bovine serum albumin (nano-dBSA) functionalization was developed to target cancer biomarkers. The novel graphene–protein bioelectronic interface was constructed by heating to denature native BSA on the graphene substrate surface. The formed nano-dBSA film served as the cross-linker to immobilize monoclonal antibody against carcinoembryonic antigen (anti-CEA mAb) on the graphene channel activated by EDC and Sulfo-NHS. The nano-dBSA film worked as a self-protecting layer of graphene to prevent surface contamination by lithographic processing. The improved GFET biosensor exhibited good specificity and high sensitivity toward the target at an ultralow concentration of 337.58 fg mL(−1). The electrical detection of the binding of CEA followed the Hill model for ligand–receptor interaction, indicating the negative binding cooperativity between CEA and anti-CEA mAb with a dissociation constant of 6.82 × 10(−10) M. The multifunctional nano-dBSA functionalization can confer a new function to graphene-like 2D nanomaterials and provide a promising bio-functionalization method for clinical application in biosensing, nanomedicine, and drug delivery. [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s40820-019-0250-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-7770693 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer Singapore |
record_format | MEDLINE/PubMed |
spelling | pubmed-77706932021-06-14 Novel Graphene Biosensor Based on the Functionalization of Multifunctional Nano-bovine Serum Albumin for the Highly Sensitive Detection of Cancer Biomarkers Zhou, Lin Wang, Kun Sun, Hao Zhao, Simin Chen, Xianfeng Qian, Dahong Mao, Hongju Zhao, Jianlong Nanomicro Lett Article A simple, convenient, and highly sensitive bio-interface for graphene field-effect transistors (GFETs) based on multifunctional nano-denatured bovine serum albumin (nano-dBSA) functionalization was developed to target cancer biomarkers. The novel graphene–protein bioelectronic interface was constructed by heating to denature native BSA on the graphene substrate surface. The formed nano-dBSA film served as the cross-linker to immobilize monoclonal antibody against carcinoembryonic antigen (anti-CEA mAb) on the graphene channel activated by EDC and Sulfo-NHS. The nano-dBSA film worked as a self-protecting layer of graphene to prevent surface contamination by lithographic processing. The improved GFET biosensor exhibited good specificity and high sensitivity toward the target at an ultralow concentration of 337.58 fg mL(−1). The electrical detection of the binding of CEA followed the Hill model for ligand–receptor interaction, indicating the negative binding cooperativity between CEA and anti-CEA mAb with a dissociation constant of 6.82 × 10(−10) M. The multifunctional nano-dBSA functionalization can confer a new function to graphene-like 2D nanomaterials and provide a promising bio-functionalization method for clinical application in biosensing, nanomedicine, and drug delivery. [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s40820-019-0250-8) contains supplementary material, which is available to authorized users. Springer Singapore 2019-03-09 /pmc/articles/PMC7770693/ /pubmed/34137997 http://dx.doi.org/10.1007/s40820-019-0250-8 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Zhou, Lin Wang, Kun Sun, Hao Zhao, Simin Chen, Xianfeng Qian, Dahong Mao, Hongju Zhao, Jianlong Novel Graphene Biosensor Based on the Functionalization of Multifunctional Nano-bovine Serum Albumin for the Highly Sensitive Detection of Cancer Biomarkers |
title | Novel Graphene Biosensor Based on the Functionalization of Multifunctional Nano-bovine Serum Albumin for the Highly Sensitive Detection of Cancer Biomarkers |
title_full | Novel Graphene Biosensor Based on the Functionalization of Multifunctional Nano-bovine Serum Albumin for the Highly Sensitive Detection of Cancer Biomarkers |
title_fullStr | Novel Graphene Biosensor Based on the Functionalization of Multifunctional Nano-bovine Serum Albumin for the Highly Sensitive Detection of Cancer Biomarkers |
title_full_unstemmed | Novel Graphene Biosensor Based on the Functionalization of Multifunctional Nano-bovine Serum Albumin for the Highly Sensitive Detection of Cancer Biomarkers |
title_short | Novel Graphene Biosensor Based on the Functionalization of Multifunctional Nano-bovine Serum Albumin for the Highly Sensitive Detection of Cancer Biomarkers |
title_sort | novel graphene biosensor based on the functionalization of multifunctional nano-bovine serum albumin for the highly sensitive detection of cancer biomarkers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770693/ https://www.ncbi.nlm.nih.gov/pubmed/34137997 http://dx.doi.org/10.1007/s40820-019-0250-8 |
work_keys_str_mv | AT zhoulin novelgraphenebiosensorbasedonthefunctionalizationofmultifunctionalnanobovineserumalbuminforthehighlysensitivedetectionofcancerbiomarkers AT wangkun novelgraphenebiosensorbasedonthefunctionalizationofmultifunctionalnanobovineserumalbuminforthehighlysensitivedetectionofcancerbiomarkers AT sunhao novelgraphenebiosensorbasedonthefunctionalizationofmultifunctionalnanobovineserumalbuminforthehighlysensitivedetectionofcancerbiomarkers AT zhaosimin novelgraphenebiosensorbasedonthefunctionalizationofmultifunctionalnanobovineserumalbuminforthehighlysensitivedetectionofcancerbiomarkers AT chenxianfeng novelgraphenebiosensorbasedonthefunctionalizationofmultifunctionalnanobovineserumalbuminforthehighlysensitivedetectionofcancerbiomarkers AT qiandahong novelgraphenebiosensorbasedonthefunctionalizationofmultifunctionalnanobovineserumalbuminforthehighlysensitivedetectionofcancerbiomarkers AT maohongju novelgraphenebiosensorbasedonthefunctionalizationofmultifunctionalnanobovineserumalbuminforthehighlysensitivedetectionofcancerbiomarkers AT zhaojianlong novelgraphenebiosensorbasedonthefunctionalizationofmultifunctionalnanobovineserumalbuminforthehighlysensitivedetectionofcancerbiomarkers |