Cargando…
Machine Learning-Based Detection of Graphene Defects with Atomic Precision
Defects in graphene can profoundly impact its extraordinary properties, ultimately influencing the performances of graphene-based nanodevices. Methods to detect defects with atomic resolution in graphene can be technically demanding and involve complex sample preparations. An alternative approach is...
Autores principales: | Zheng, Bowen, Gu, Grace X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770819/ https://www.ncbi.nlm.nih.gov/pubmed/34138207 http://dx.doi.org/10.1007/s40820-020-00519-w |
Ejemplares similares
-
Scalable Graphene Defect Prediction Using Transferable Learning
por: Zheng, Bowen, et al.
Publicado: (2021) -
Raman Fingerprints of Atomically Precise Graphene
Nanoribbons
por: Verzhbitskiy, Ivan A., et al.
Publicado: (2016) -
Edge Contacts to
Atomically Precise Graphene Nanoribbons
por: Huang, Wenhao, et al.
Publicado: (2023) -
Exploring the configurational space of amorphous graphene with machine-learned atomic energies
por: El-Machachi, Zakariya, et al.
Publicado: (2022) -
Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions
por: Senkovskiy, Boris V., et al.
Publicado: (2021)