Cargando…

Electrostatic Self-assembly of 0D–2D SnO(2) Quantum Dots/Ti(3)C(2)T(x) MXene Hybrids as Anode for Lithium-Ion Batteries

MXenes, a new family of two-dimensional (2D) materials with excellent electronic conductivity and hydrophilicity, have shown distinctive advantages as a highly conductive matrix material for lithium-ion battery anodes. Herein, a facile electrostatic self-assembly of SnO(2) quantum dots (QDs) on Ti(3...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Huan, Zhang, Xin, Zhu, Yifan, Cao, Bin, Zhu, Qizhen, Zhang, Peng, Xu, Bin, Wu, Feng, Chen, Renjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770891/
https://www.ncbi.nlm.nih.gov/pubmed/34138001
http://dx.doi.org/10.1007/s40820-019-0296-7
_version_ 1783629605705351168
author Liu, Huan
Zhang, Xin
Zhu, Yifan
Cao, Bin
Zhu, Qizhen
Zhang, Peng
Xu, Bin
Wu, Feng
Chen, Renjie
author_facet Liu, Huan
Zhang, Xin
Zhu, Yifan
Cao, Bin
Zhu, Qizhen
Zhang, Peng
Xu, Bin
Wu, Feng
Chen, Renjie
author_sort Liu, Huan
collection PubMed
description MXenes, a new family of two-dimensional (2D) materials with excellent electronic conductivity and hydrophilicity, have shown distinctive advantages as a highly conductive matrix material for lithium-ion battery anodes. Herein, a facile electrostatic self-assembly of SnO(2) quantum dots (QDs) on Ti(3)C(2)T(x) MXene sheets is proposed. The as-prepared SnO(2)/MXene hybrids have a unique 0D–2D structure, in which the 0D SnO(2) QDs (~ 4.7 nm) are uniformly distributed over 2D Ti(3)C(2)T(x) MXene sheets with controllable loading amount. The SnO(2) QDs serve as a high capacity provider and the “spacer” to prevent the MXene sheets from restacking; the highly conductive Ti(3)C(2)T(x) MXene can not only provide efficient pathways for fast transport of electrons and Li ions, but also buffer the volume change of SnO(2) during lithiation/delithiation by confining SnO(2) QDs between the MXene nanosheets. Therefore, the 0D–2D SnO(2) QDs/MXene hybrids deliver superior lithium storage properties with high capacity (887.4 mAh g(−1) at 50 mA g(−1)), stable cycle performance (659.8 mAh g(−1) at 100 mA g(−1) after 100 cycles with a capacity retention of 91%) and excellent rate performance (364 mAh g(−1) at 3 A g(−1)), making it a promising anode material for lithium-ion batteries. [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s40820-019-0296-7) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-7770891
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Springer Singapore
record_format MEDLINE/PubMed
spelling pubmed-77708912021-06-14 Electrostatic Self-assembly of 0D–2D SnO(2) Quantum Dots/Ti(3)C(2)T(x) MXene Hybrids as Anode for Lithium-Ion Batteries Liu, Huan Zhang, Xin Zhu, Yifan Cao, Bin Zhu, Qizhen Zhang, Peng Xu, Bin Wu, Feng Chen, Renjie Nanomicro Lett Article MXenes, a new family of two-dimensional (2D) materials with excellent electronic conductivity and hydrophilicity, have shown distinctive advantages as a highly conductive matrix material for lithium-ion battery anodes. Herein, a facile electrostatic self-assembly of SnO(2) quantum dots (QDs) on Ti(3)C(2)T(x) MXene sheets is proposed. The as-prepared SnO(2)/MXene hybrids have a unique 0D–2D structure, in which the 0D SnO(2) QDs (~ 4.7 nm) are uniformly distributed over 2D Ti(3)C(2)T(x) MXene sheets with controllable loading amount. The SnO(2) QDs serve as a high capacity provider and the “spacer” to prevent the MXene sheets from restacking; the highly conductive Ti(3)C(2)T(x) MXene can not only provide efficient pathways for fast transport of electrons and Li ions, but also buffer the volume change of SnO(2) during lithiation/delithiation by confining SnO(2) QDs between the MXene nanosheets. Therefore, the 0D–2D SnO(2) QDs/MXene hybrids deliver superior lithium storage properties with high capacity (887.4 mAh g(−1) at 50 mA g(−1)), stable cycle performance (659.8 mAh g(−1) at 100 mA g(−1) after 100 cycles with a capacity retention of 91%) and excellent rate performance (364 mAh g(−1) at 3 A g(−1)), making it a promising anode material for lithium-ion batteries. [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s40820-019-0296-7) contains supplementary material, which is available to authorized users. Springer Singapore 2019-08-02 /pmc/articles/PMC7770891/ /pubmed/34138001 http://dx.doi.org/10.1007/s40820-019-0296-7 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Liu, Huan
Zhang, Xin
Zhu, Yifan
Cao, Bin
Zhu, Qizhen
Zhang, Peng
Xu, Bin
Wu, Feng
Chen, Renjie
Electrostatic Self-assembly of 0D–2D SnO(2) Quantum Dots/Ti(3)C(2)T(x) MXene Hybrids as Anode for Lithium-Ion Batteries
title Electrostatic Self-assembly of 0D–2D SnO(2) Quantum Dots/Ti(3)C(2)T(x) MXene Hybrids as Anode for Lithium-Ion Batteries
title_full Electrostatic Self-assembly of 0D–2D SnO(2) Quantum Dots/Ti(3)C(2)T(x) MXene Hybrids as Anode for Lithium-Ion Batteries
title_fullStr Electrostatic Self-assembly of 0D–2D SnO(2) Quantum Dots/Ti(3)C(2)T(x) MXene Hybrids as Anode for Lithium-Ion Batteries
title_full_unstemmed Electrostatic Self-assembly of 0D–2D SnO(2) Quantum Dots/Ti(3)C(2)T(x) MXene Hybrids as Anode for Lithium-Ion Batteries
title_short Electrostatic Self-assembly of 0D–2D SnO(2) Quantum Dots/Ti(3)C(2)T(x) MXene Hybrids as Anode for Lithium-Ion Batteries
title_sort electrostatic self-assembly of 0d–2d sno(2) quantum dots/ti(3)c(2)t(x) mxene hybrids as anode for lithium-ion batteries
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770891/
https://www.ncbi.nlm.nih.gov/pubmed/34138001
http://dx.doi.org/10.1007/s40820-019-0296-7
work_keys_str_mv AT liuhuan electrostaticselfassemblyof0d2dsno2quantumdotsti3c2txmxenehybridsasanodeforlithiumionbatteries
AT zhangxin electrostaticselfassemblyof0d2dsno2quantumdotsti3c2txmxenehybridsasanodeforlithiumionbatteries
AT zhuyifan electrostaticselfassemblyof0d2dsno2quantumdotsti3c2txmxenehybridsasanodeforlithiumionbatteries
AT caobin electrostaticselfassemblyof0d2dsno2quantumdotsti3c2txmxenehybridsasanodeforlithiumionbatteries
AT zhuqizhen electrostaticselfassemblyof0d2dsno2quantumdotsti3c2txmxenehybridsasanodeforlithiumionbatteries
AT zhangpeng electrostaticselfassemblyof0d2dsno2quantumdotsti3c2txmxenehybridsasanodeforlithiumionbatteries
AT xubin electrostaticselfassemblyof0d2dsno2quantumdotsti3c2txmxenehybridsasanodeforlithiumionbatteries
AT wufeng electrostaticselfassemblyof0d2dsno2quantumdotsti3c2txmxenehybridsasanodeforlithiumionbatteries
AT chenrenjie electrostaticselfassemblyof0d2dsno2quantumdotsti3c2txmxenehybridsasanodeforlithiumionbatteries