Cargando…

Deep learning for HGT insertion sites recognition

BACKGROUND: Horizontal Gene Transfer (HGT) refers to the sharing of genetic materials between distant species that are not in a parent-offspring relationship. The HGT insertion sites are important to understand the HGT mechanisms. Recent studies in main agents of HGT, such as transposon and plasmid,...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chen, Chen, Jiaxing, Li, Shuai Cheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7771070/
https://www.ncbi.nlm.nih.gov/pubmed/33372605
http://dx.doi.org/10.1186/s12864-020-07296-1
Descripción
Sumario:BACKGROUND: Horizontal Gene Transfer (HGT) refers to the sharing of genetic materials between distant species that are not in a parent-offspring relationship. The HGT insertion sites are important to understand the HGT mechanisms. Recent studies in main agents of HGT, such as transposon and plasmid, demonstrate that insertion sites usually hold specific sequence features. This motivates us to find a method to infer HGT insertion sites according to sequence features. RESULTS: In this paper, we propose a deep residual network, DeepHGT, to recognize HGT insertion sites. To train DeepHGT, we extracted about 1.55 million sequence segments as training instances from 262 metagenomic samples, where the ratio between positive instances and negative instances is about 1:1. These segments are randomly partitioned into three subsets: 80% of them as the training set, 10% as the validation set, and the remaining 10% as the test set. The training loss of DeepHGT is 0.4163 and the validation loss is 0.423. On the test set, DeepHGT has achieved the area under curve (AUC) value of 0.8782. Furthermore, in order to further evaluate the generalization of DeepHGT, we constructed an independent test set containing 689,312 sequence segments from another 147 gut metagenomic samples. DeepHGT has achieved the AUC value of 0.8428, which approaches the previous test AUC value. As a comparison, the gradient boosting classifier model implemented in PyFeat achieve an AUC value of 0.694 and 0.686 on the above two test sets, respectively. Furthermore, DeepHGT could learn discriminant sequence features; for example, DeepHGT has learned a sequence pattern of palindromic subsequences as a significantly (P-value=0.0182) local feature. Hence, DeepHGT is a reliable model to recognize the HGT insertion site. CONCLUSION: DeepHGT is the first deep learning model that can accurately recognize HGT insertion sites on genomes according to the sequence pattern.