Cargando…
C-Norm: a neural approach to few-shot entity normalization
BACKGROUND: Entity normalization is an important information extraction task which has gained renewed attention in the last decade, particularly in the biomedical and life science domains. In these domains, and more generally in all specialized domains, this task is still challenging for the latest...
Autores principales: | Ferré, Arnaud, Deléger, Louise, Bossy, Robert, Zweigenbaum, Pierre, Nédellec, Claire |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7771092/ https://www.ncbi.nlm.nih.gov/pubmed/33372606 http://dx.doi.org/10.1186/s12859-020-03886-8 |
Ejemplares similares
-
Do syntactic trees enhance Bidirectional Encoder Representations from Transformers (BERT) models for chemical–drug relation extraction?
por: Tang, Anfu, et al.
Publicado: (2022) -
Text mining tools for extracting information about microbial biodiversity in food
por: Chaix, Estelle, et al.
Publicado: (2019) -
Improving the CONTES method for normalizing biomedical text entities with concepts from an ontology with (almost) no training data
por: Ferré, Arnaud, et al.
Publicado: (2019) -
Omnicrobe, an open-access database of microbial habitats and phenotypes using a comprehensive text mining and data fusion approach
por: Dérozier, Sandra, et al.
Publicado: (2023) -
An Entity Relation Extraction Method for Few-Shot Learning on the Food Health and Safety Domain
por: Zuo, Min, et al.
Publicado: (2022)