Cargando…
Multi-criterion Intelligent Decision Support system for COVID-19
COVID-19 is a buzz word nowadays. The deadly virus that started in China has spread worldwide. The fundamental principle is “if the disease can travel faster information has to travel even faster”. The sequence of events reveals the upheaval need to strengthen the ability of the early warning system...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7771316/ https://www.ncbi.nlm.nih.gov/pubmed/33390874 http://dx.doi.org/10.1016/j.asoc.2020.107056 |
Sumario: | COVID-19 is a buzz word nowadays. The deadly virus that started in China has spread worldwide. The fundamental principle is “if the disease can travel faster information has to travel even faster”. The sequence of events reveals the upheaval need to strengthen the ability of the early warning system, risk reduction, and management of national and global risks. Digital contact tracing apps like Aarogya setu (India) and Pan-European privacy preserving proximity tracing (German) has somehow helped but they are more effective in the initial stage and less relevant in the community spread phase. Thus, there is a need to devise a Decision Support System (DSS) based on machine learning algorithms. In this paper, we have attempted to propose an Additive Utility Assumption Approach for Criterion Comparison in Multi-criterion Intelligent Decision Support system for COVID-19. The dataset of Covid-19 has been taken from government link for validating the results. In this paper, an additive utility assumption-based approach for multi-criterion decision support system (MCDSS) with an accurate prediction of identified risk factors on certain well-defined input parameters is proposed and validated empirically using the standard SEIR model approach (Susceptible, Exposed, Infected and Recovered). The results includes comparative analysis in tabular form with already existing approaches to illustrate the potential of the proposed approach including the parameters such as Precision, Recall and F-Score. Other advanced parameters such as, MCC (Matthews Correlation Coefficient), ROC (Receiver Operating Characteristics) and PRC (Precision Recall) have also been considered for validation and the graphs are illustrated using Jupyter notebook. The statistical analysis of the most affected top eight states of India is undertaken effectively using the Weka software tool and IBM Cognos software to correctly predict the outbreak of pandemic situation due to Covid-19. Finally, the article has immense potential to contribute to the COVID-19 situation and may prove to be instrumental in propelling the research interest of researchers and providing some useful insights for the current pandemic situation. |
---|