Cargando…
Toward radiomics for assessment of response to systemic therapies in lung cancer
This editorial comment explains recent developments in radiomics regarding the use of quantitative imaging biomarkers to predict lung cancer sensitivity to a variety of cancer therapies. Tumor response assessment has been a crucial component guiding cancer treatment. Evaluation of treatment response...
Autores principales: | Sun, Shawn, Besson, Florent L., Zhao, Binsheng, Schwartz, Lawrence H., Dercle, Laurent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7771714/ https://www.ncbi.nlm.nih.gov/pubmed/33473253 http://dx.doi.org/10.18632/oncotarget.27847 |
Ejemplares similares
-
Artificial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy
por: Dercle, Laurent, et al.
Publicado: (2022) -
Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging
por: Lu, Lin, et al.
Publicado: (2021) -
CT Slice Thickness and Convolution Kernel Affect Performance of a Radiomic Model for Predicting EGFR Status in Non-Small Cell Lung Cancer: A Preliminary Study
por: Li, Yajun, et al.
Publicado: (2018) -
Identifying Robust Radiomics Features for Lung Cancer by Using In-Vivo and Phantom Lung Lesions
por: Lu, Lin, et al.
Publicado: (2021) -
Radiomics Prediction of EGFR Status in Lung Cancer—Our Experience in Using Multiple Feature Extractors and The Cancer Imaging Archive Data
por: Lu, Lin, et al.
Publicado: (2020)