Cargando…
The brain in motion: How ensemble fluidity drives memory-updating and flexibility
While memories are often thought of as flashbacks to a previous experience, they do not simply conserve veridical representations of the past but must continually integrate new information to ensure survival in dynamic environments. Therefore, ‘drift’ in neural firing patterns, typically construed a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7771967/ https://www.ncbi.nlm.nih.gov/pubmed/33372892 http://dx.doi.org/10.7554/eLife.63550 |
_version_ | 1783629779595952128 |
---|---|
author | Mau, William Hasselmo, Michael E Cai, Denise J |
author_facet | Mau, William Hasselmo, Michael E Cai, Denise J |
author_sort | Mau, William |
collection | PubMed |
description | While memories are often thought of as flashbacks to a previous experience, they do not simply conserve veridical representations of the past but must continually integrate new information to ensure survival in dynamic environments. Therefore, ‘drift’ in neural firing patterns, typically construed as disruptive ‘instability’ or an undesirable consequence of noise, may actually be useful for updating memories. In our view, continual modifications in memory representations reconcile classical theories of stable memory traces with neural drift. Here we review how memory representations are updated through dynamic recruitment of neuronal ensembles on the basis of excitability and functional connectivity at the time of learning. Overall, we emphasize the importance of considering memories not as static entities, but instead as flexible network states that reactivate and evolve across time and experience. |
format | Online Article Text |
id | pubmed-7771967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-77719672020-12-30 The brain in motion: How ensemble fluidity drives memory-updating and flexibility Mau, William Hasselmo, Michael E Cai, Denise J eLife Neuroscience While memories are often thought of as flashbacks to a previous experience, they do not simply conserve veridical representations of the past but must continually integrate new information to ensure survival in dynamic environments. Therefore, ‘drift’ in neural firing patterns, typically construed as disruptive ‘instability’ or an undesirable consequence of noise, may actually be useful for updating memories. In our view, continual modifications in memory representations reconcile classical theories of stable memory traces with neural drift. Here we review how memory representations are updated through dynamic recruitment of neuronal ensembles on the basis of excitability and functional connectivity at the time of learning. Overall, we emphasize the importance of considering memories not as static entities, but instead as flexible network states that reactivate and evolve across time and experience. eLife Sciences Publications, Ltd 2020-12-29 /pmc/articles/PMC7771967/ /pubmed/33372892 http://dx.doi.org/10.7554/eLife.63550 Text en © 2020, Mau et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Mau, William Hasselmo, Michael E Cai, Denise J The brain in motion: How ensemble fluidity drives memory-updating and flexibility |
title | The brain in motion: How ensemble fluidity drives memory-updating and flexibility |
title_full | The brain in motion: How ensemble fluidity drives memory-updating and flexibility |
title_fullStr | The brain in motion: How ensemble fluidity drives memory-updating and flexibility |
title_full_unstemmed | The brain in motion: How ensemble fluidity drives memory-updating and flexibility |
title_short | The brain in motion: How ensemble fluidity drives memory-updating and flexibility |
title_sort | brain in motion: how ensemble fluidity drives memory-updating and flexibility |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7771967/ https://www.ncbi.nlm.nih.gov/pubmed/33372892 http://dx.doi.org/10.7554/eLife.63550 |
work_keys_str_mv | AT mauwilliam thebraininmotionhowensemblefluiditydrivesmemoryupdatingandflexibility AT hasselmomichaele thebraininmotionhowensemblefluiditydrivesmemoryupdatingandflexibility AT caidenisej thebraininmotionhowensemblefluiditydrivesmemoryupdatingandflexibility AT mauwilliam braininmotionhowensemblefluiditydrivesmemoryupdatingandflexibility AT hasselmomichaele braininmotionhowensemblefluiditydrivesmemoryupdatingandflexibility AT caidenisej braininmotionhowensemblefluiditydrivesmemoryupdatingandflexibility |