Cargando…
Risk Assessment of Hip Fracture Based on Machine Learning
Identifying patients with high risk of hip fracture is a great challenge in osteoporosis clinical assessment. Bone Mineral Density (BMD) measured by Dual-Energy X-Ray Absorptiometry (DXA) is the current gold standard in osteoporosis clinical assessment. However, its classification accuracy is only a...
Autores principales: | Galassi, Alessio, Martín-Guerrero, José D., Villamor, Eduardo, Monserrat, Carlos, Rupérez, María José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772022/ https://www.ncbi.nlm.nih.gov/pubmed/33425008 http://dx.doi.org/10.1155/2020/8880786 |
Ejemplares similares
-
Machine learning algorithms to predict risk of postoperative pneumonia in elderly with hip fracture
por: Guo, Jiale, et al.
Publicado: (2023) -
Effect of Artificial Intelligence or Machine Learning on Prediction of Hip Fracture Risk: Systematic Review
por: Cha, Yonghan, et al.
Publicado: (2023) -
Machine learning outperforms clinical experts in classification of hip fractures
por: Murphy, E. A., et al.
Publicado: (2022) -
Artificial intelligence and machine learning on diagnosis and classification of hip fracture: systematic review
por: Cha, Yonghan, et al.
Publicado: (2022) -
Implementation of a machine learning application in preoperative risk assessment for hip repair surgery
por: Li, Yu-Yu, et al.
Publicado: (2022)