Cargando…
Extracting Family History of Patients From Clinical Narratives: Exploring an End-to-End Solution With Deep Learning Models
BACKGROUND: Patients’ family history (FH) is a critical risk factor associated with numerous diseases. However, FH information is not well captured in the structured database but often documented in clinical narratives. Natural language processing (NLP) is the key technology to extract patients’ FH...
Autores principales: | Yang, Xi, Zhang, Hansi, He, Xing, Bian, Jiang, Wu, Yonghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772072/ https://www.ncbi.nlm.nih.gov/pubmed/33320104 http://dx.doi.org/10.2196/22982 |
Ejemplares similares
-
Exploring End-to-end Deep Learning Applications for Event Classification at CMS
por: Andrews, Michael Benjamin, et al.
Publicado: (2018) -
End-to-End Autonomous Exploration with Deep Reinforcement Learning and Intrinsic Motivation
por: Ruan, Xiaogang, et al.
Publicado: (2021) -
End of Life: A Family Narrative
por: Black, Helen K., et al.
Publicado: (2011) -
Lightweight End-to-End Deep Learning Solution for Estimating the Respiration Rate from Photoplethysmogram Signal
por: Chowdhury, Moajjem Hossain, et al.
Publicado: (2022) -
A Hybrid Model for Family History Information Identification and Relation Extraction: Development and Evaluation of an End-to-End Information Extraction System
por: Kim, Youngjun, et al.
Publicado: (2021)