Cargando…

Effective synthesis of bicyclodienes via palladium-catalyzed asymmetric allylic alkylation and ruthenium-catalyzed cycloisomerization

[n.3.0]Bicycles (n = 3–6) can be synthesized using palladium-catalyzed asymmetric allylic alkylation followed by ruthenium-catalyzed cycloisomerization. New types of triarylphosphino-1,2-diaminooxazoline ligands show the same high levels of enantioselectivity observed with Trost ligand when employed...

Descripción completa

Detalles Bibliográficos
Autor principal: HAVARE, Nizam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Scientific and Technological Research Council of Turkey 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772093/
https://www.ncbi.nlm.nih.gov/pubmed/33488243
http://dx.doi.org/10.3906/kim-2004-81
Descripción
Sumario:[n.3.0]Bicycles (n = 3–6) can be synthesized using palladium-catalyzed asymmetric allylic alkylation followed by ruthenium-catalyzed cycloisomerization. New types of triarylphosphino-1,2-diaminooxazoline ligands show the same high levels of enantioselectivity observed with Trost ligand when employed in Pd-catalyzed allylic alkylation reactions. The enyne products of these allylic alkylation reactions were further elaborated using a Ru-catalyzed redox isomerization process, for which a mechanism is proposed.