Cargando…

Systematic and Comprehensive Automated Ventricle Segmentation on Ventricle Images of the Elderly Patients: A Retrospective Study

Background and Objective: Ventricle volume is closely related to hydrocephalus, brain atrophy, Alzheimer's, Parkinson's syndrome, and other diseases. To accurately measure the volume of the ventricles for elderly patients, we use deep learning to establish a systematic and comprehensive au...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Xi, Ye, Qinghao, Jiang, Yinghui, Wang, Minhao, Niu, Zhangming, Menpes-Smith, Wade, Fang, Evandro Fei, Liu, Zhi, Xia, Jun, Yang, Guang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772233/
https://www.ncbi.nlm.nih.gov/pubmed/33390930
http://dx.doi.org/10.3389/fnagi.2020.618538
_version_ 1783629832425308160
author Zhou, Xi
Ye, Qinghao
Jiang, Yinghui
Wang, Minhao
Niu, Zhangming
Menpes-Smith, Wade
Fang, Evandro Fei
Liu, Zhi
Xia, Jun
Yang, Guang
author_facet Zhou, Xi
Ye, Qinghao
Jiang, Yinghui
Wang, Minhao
Niu, Zhangming
Menpes-Smith, Wade
Fang, Evandro Fei
Liu, Zhi
Xia, Jun
Yang, Guang
author_sort Zhou, Xi
collection PubMed
description Background and Objective: Ventricle volume is closely related to hydrocephalus, brain atrophy, Alzheimer's, Parkinson's syndrome, and other diseases. To accurately measure the volume of the ventricles for elderly patients, we use deep learning to establish a systematic and comprehensive automated ventricle segmentation framework. Methods: The study participation included 20 normal elderly people, 20 patients with cerebral atrophy, 64 patients with normal pressure hydrocephalus, and 51 patients with acquired hydrocephalus. Second, get their imaging data through the picture archiving and communication systems (PACS) system. Then use ITK software to manually label participants' ventricular structures. Finally, extract imaging features through machine learning. Results: This automated ventricle segmentation method can be applied not only to CT and MRI images but also to images with different scan slice thicknesses. More importantly, it produces excellent segmentation results (Dice > 0.9). Conclusion: This automated ventricle segmentation method has wide applicability and clinical practicability. It can help clinicians find early disease, diagnose disease, understand the patient's disease progression, and evaluate the patient's treatment effect.
format Online
Article
Text
id pubmed-7772233
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-77722332020-12-31 Systematic and Comprehensive Automated Ventricle Segmentation on Ventricle Images of the Elderly Patients: A Retrospective Study Zhou, Xi Ye, Qinghao Jiang, Yinghui Wang, Minhao Niu, Zhangming Menpes-Smith, Wade Fang, Evandro Fei Liu, Zhi Xia, Jun Yang, Guang Front Aging Neurosci Neuroscience Background and Objective: Ventricle volume is closely related to hydrocephalus, brain atrophy, Alzheimer's, Parkinson's syndrome, and other diseases. To accurately measure the volume of the ventricles for elderly patients, we use deep learning to establish a systematic and comprehensive automated ventricle segmentation framework. Methods: The study participation included 20 normal elderly people, 20 patients with cerebral atrophy, 64 patients with normal pressure hydrocephalus, and 51 patients with acquired hydrocephalus. Second, get their imaging data through the picture archiving and communication systems (PACS) system. Then use ITK software to manually label participants' ventricular structures. Finally, extract imaging features through machine learning. Results: This automated ventricle segmentation method can be applied not only to CT and MRI images but also to images with different scan slice thicknesses. More importantly, it produces excellent segmentation results (Dice > 0.9). Conclusion: This automated ventricle segmentation method has wide applicability and clinical practicability. It can help clinicians find early disease, diagnose disease, understand the patient's disease progression, and evaluate the patient's treatment effect. Frontiers Media S.A. 2020-12-16 /pmc/articles/PMC7772233/ /pubmed/33390930 http://dx.doi.org/10.3389/fnagi.2020.618538 Text en Copyright © 2020 Zhou, Ye, Jiang, Wang, Niu, Menpes-Smith, Fang, Liu, Xia and Yang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Zhou, Xi
Ye, Qinghao
Jiang, Yinghui
Wang, Minhao
Niu, Zhangming
Menpes-Smith, Wade
Fang, Evandro Fei
Liu, Zhi
Xia, Jun
Yang, Guang
Systematic and Comprehensive Automated Ventricle Segmentation on Ventricle Images of the Elderly Patients: A Retrospective Study
title Systematic and Comprehensive Automated Ventricle Segmentation on Ventricle Images of the Elderly Patients: A Retrospective Study
title_full Systematic and Comprehensive Automated Ventricle Segmentation on Ventricle Images of the Elderly Patients: A Retrospective Study
title_fullStr Systematic and Comprehensive Automated Ventricle Segmentation on Ventricle Images of the Elderly Patients: A Retrospective Study
title_full_unstemmed Systematic and Comprehensive Automated Ventricle Segmentation on Ventricle Images of the Elderly Patients: A Retrospective Study
title_short Systematic and Comprehensive Automated Ventricle Segmentation on Ventricle Images of the Elderly Patients: A Retrospective Study
title_sort systematic and comprehensive automated ventricle segmentation on ventricle images of the elderly patients: a retrospective study
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772233/
https://www.ncbi.nlm.nih.gov/pubmed/33390930
http://dx.doi.org/10.3389/fnagi.2020.618538
work_keys_str_mv AT zhouxi systematicandcomprehensiveautomatedventriclesegmentationonventricleimagesoftheelderlypatientsaretrospectivestudy
AT yeqinghao systematicandcomprehensiveautomatedventriclesegmentationonventricleimagesoftheelderlypatientsaretrospectivestudy
AT jiangyinghui systematicandcomprehensiveautomatedventriclesegmentationonventricleimagesoftheelderlypatientsaretrospectivestudy
AT wangminhao systematicandcomprehensiveautomatedventriclesegmentationonventricleimagesoftheelderlypatientsaretrospectivestudy
AT niuzhangming systematicandcomprehensiveautomatedventriclesegmentationonventricleimagesoftheelderlypatientsaretrospectivestudy
AT menpessmithwade systematicandcomprehensiveautomatedventriclesegmentationonventricleimagesoftheelderlypatientsaretrospectivestudy
AT fangevandrofei systematicandcomprehensiveautomatedventriclesegmentationonventricleimagesoftheelderlypatientsaretrospectivestudy
AT liuzhi systematicandcomprehensiveautomatedventriclesegmentationonventricleimagesoftheelderlypatientsaretrospectivestudy
AT xiajun systematicandcomprehensiveautomatedventriclesegmentationonventricleimagesoftheelderlypatientsaretrospectivestudy
AT yangguang systematicandcomprehensiveautomatedventriclesegmentationonventricleimagesoftheelderlypatientsaretrospectivestudy