Cargando…

Distinguishing intrinsic photon correlations from external noise with frequency-resolved homodyne detection

In this work, we apply homodyne detection to investigate the frequency-resolved photon statistics of a cw light field emitted by a driven-dissipative semiconductor system in real time. We demonstrate that studying the frequency dependence of the photon number noise allows us to distinguish intrinsic...

Descripción completa

Detalles Bibliográficos
Autores principales: Lüders, Carolin, Aßmann, Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772345/
https://www.ncbi.nlm.nih.gov/pubmed/33376250
http://dx.doi.org/10.1038/s41598-020-79686-0
Descripción
Sumario:In this work, we apply homodyne detection to investigate the frequency-resolved photon statistics of a cw light field emitted by a driven-dissipative semiconductor system in real time. We demonstrate that studying the frequency dependence of the photon number noise allows us to distinguish intrinsic noise properties of the emitter from external noise sources such as mechanical noise while maintaining a sub-picosecond temporal resolution. We further show that performing postselection on the recorded data opens up the possibility to study rare events in the dynamics of the emitter. By doing so, we demonstrate that in rare instances, additional external noise may actually result in reduced photon number noise in the emission.