Cargando…
Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise
OBJECTIVE: Iterative reconstruction degrades image quality. Thus, further advances in image reconstruction are necessary to overcome some limitations of this technique in low-dose computed tomography (LDCT) scan of the chest. Deep-learning image reconstruction (DLIR) is a new method used to reduce d...
Autores principales: | Kim, Joo Hee, Yoon, Hyun Jung, Lee, Eunju, Kim, Injoong, Cha, Yoon Ki, Bak, So Hyeon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772377/ https://www.ncbi.nlm.nih.gov/pubmed/32729277 http://dx.doi.org/10.3348/kjr.2020.0116 |
Ejemplares similares
-
Pictorial Review of Mediastinal Masses with an Emphasis on Magnetic Resonance Imaging
por: Park, Jin Wang, et al.
Publicado: (2021) -
Automated Lung Segmentation on Chest Computed Tomography Images with Extensive Lung Parenchymal Abnormalities Using a Deep Neural Network
por: Yoo, Seung-Jin, et al.
Publicado: (2021) -
Chest CT Features of Cystic Fibrosis in Korea: Comparison with Non-Cystic Fibrosis Diseases
por: Yang, So Yeon, et al.
Publicado: (2017) -
Chest Radiographic and CT Findings of the 2019 Novel Coronavirus Disease (COVID-19): Analysis of Nine Patients Treated in Korea
por: Yoon, Soon Ho, et al.
Publicado: (2020) -
Computed Tomography Findings of Community-Acquired Stenotrophomonas Maltophilia Pneumonia in an Immunocompetent Patient: A Case Report
por: Cha, Yoon Ki, et al.
Publicado: (2016)