Cargando…

Screening metal-organic frameworks for adsorption-driven osmotic heat engines via grand canonical Monte Carlo simulations and machine learning

Adsorption-driven osmotic heat engines offer an alternative way for harvesting low-grade waste heat below 80°C. In this study, we performed a high-throughput computational screening based on grand canonical Monte Carlo simulations to identify the high-performance metal-organic frameworks (MOFs) from...

Descripción completa

Detalles Bibliográficos
Autores principales: Long, Rui, Xia, Xiaoxiao, Zhao, Yanan, Li, Song, Liu, Zhichun, Liu, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772570/
https://www.ncbi.nlm.nih.gov/pubmed/33385115
http://dx.doi.org/10.1016/j.isci.2020.101914
Descripción
Sumario:Adsorption-driven osmotic heat engines offer an alternative way for harvesting low-grade waste heat below 80°C. In this study, we performed a high-throughput computational screening based on grand canonical Monte Carlo simulations to identify the high-performance metal-organic frameworks (MOFs) from 1322 computationally ready experimental MOF structures for adsorption-driven osmotic heat engines with LiCl-methanol as the working fluid. Structure-property relationship analysis reveals that MOFs exhibiting high energy efficiency possess large working capacity, pore size and surface area, and moderate adsorption enthalpy comparable to the evaporation enthalpy. Furthermore, machine learning is employed to accelerate the computational screening for satisfied MOFs via the structure properties. The optimal structure properties of the MOFs are further identified via the ensemble-based regression model by optimizing the energy efficiency via the genetic algorithm, which shed light on rationally designing and fabricating MOFs for desired heat-to-electricity conversion.