Cargando…
Screening metal-organic frameworks for adsorption-driven osmotic heat engines via grand canonical Monte Carlo simulations and machine learning
Adsorption-driven osmotic heat engines offer an alternative way for harvesting low-grade waste heat below 80°C. In this study, we performed a high-throughput computational screening based on grand canonical Monte Carlo simulations to identify the high-performance metal-organic frameworks (MOFs) from...
Autores principales: | Long, Rui, Xia, Xiaoxiao, Zhao, Yanan, Li, Song, Liu, Zhichun, Liu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772570/ https://www.ncbi.nlm.nih.gov/pubmed/33385115 http://dx.doi.org/10.1016/j.isci.2020.101914 |
Ejemplares similares
-
Replica-Exchange and Standard State Binding Free Energies
with Grand Canonical Monte Carlo
por: Ross, Gregory A., et al.
Publicado: (2017) -
Reactive Grand-Canonical Monte Carlo Simulations for
Modeling Hydration of MgCl(2)
por: Heijmans, Koen, et al.
Publicado: (2021) -
Enhanced Grand
Canonical Sampling of Occluded Water
Sites Using Nonequilibrium Candidate Monte Carlo
por: Melling, Oliver J., et al.
Publicado: (2023) -
Monte-Carlo : Le Grand Jeu
Publicado: (1998) -
Grand Canonical Monte Carlo Simulations to Determine the Optimal Interlayer Distance of a Graphene Slit-Shaped Pore for Adsorption of Methane, Hydrogen and their Equimolar Mixture
por: Vekeman, Jelle, et al.
Publicado: (2021)