Cargando…
Support vector machine based aphasia classification of transcranial magnetic stimulation language mapping in brain tumor patients
Repetitive TMS (rTMS) allows for non-invasive and transient disruption of local neuronal functioning. We used machine learning approaches to assess whether brain tumor patients can be accurately classified into aphasic and non-aphasic groups using their rTMS language mapping results as input feature...
Autores principales: | Wang, Ziqian, Dreyer, Felix, Pulvermüller, Friedemann, Ntemou, Effrosyni, Vajkoczy, Peter, Fekonja, Lucius S., Picht, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772815/ https://www.ncbi.nlm.nih.gov/pubmed/33360768 http://dx.doi.org/10.1016/j.nicl.2020.102536 |
Ejemplares similares
-
Improved prediction of glioma‐related aphasia by diffusion MRI metrics, machine learning, and automated fiber bundle segmentation
por: Shams, Boshra, et al.
Publicado: (2023) -
Manual for clinical language tractography
por: Fekonja, Lucius, et al.
Publicado: (2019) -
Tractography-based navigated TMS language mapping protocol
por: Reisch, Klara, et al.
Publicado: (2022) -
Detecting Corticospinal Tract Impairment in Tumor Patients With Fiber Density and Tensor-Based Metrics
por: Fekonja, Lucius S., et al.
Publicado: (2021) -
Towards a tractography-based risk stratification model for language area associated gliomas
por: Tuncer, Mehmet Salih, et al.
Publicado: (2020)