Cargando…
A One-Dimensional CNN-LSTM Model for Epileptic Seizure Recognition Using EEG Signal Analysis
Frequent epileptic seizures cause damage to the human brain, resulting in memory impairment, mental decline, and so on. Therefore, it is important to detect epileptic seizures and provide medical treatment in a timely manner. Currently, medical experts recognize epileptic seizure activity through th...
Autores principales: | Xu, Gaowei, Ren, Tianhe, Chen, Yu, Che, Wenliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772824/ https://www.ncbi.nlm.nih.gov/pubmed/33390878 http://dx.doi.org/10.3389/fnins.2020.578126 |
Ejemplares similares
-
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018) -
EEG-based emotion recognition using hybrid CNN and LSTM classification
por: Chakravarthi, Bhuvaneshwari, et al.
Publicado: (2022) -
Automatic Diagnosis of Schizophrenia in EEG Signals Using CNN-LSTM Models
por: Shoeibi, Afshin, et al.
Publicado: (2021) -
An Epileptic Seizure Prediction Method Based on CBAM-3D CNN-LSTM Model
Publicado: (2023) -
Personality-Based Emotion Recognition Using EEG Signals with a CNN-LSTM Network
por: Hosseini, Mohammad Saleh Khajeh, et al.
Publicado: (2023)