Cargando…

metaVaR: Introducing metavariant species models for reference-free metagenomic-based population genomics

The availability of large metagenomic data offers great opportunities for the population genomic analysis of uncultured organisms, which represent a large part of the unexplored biosphere and play a key ecological role. However, the majority of these organisms lack a reference genome or transcriptom...

Descripción completa

Detalles Bibliográficos
Autores principales: Laso-Jadart, Romuald, Ambroise, Christophe, Peterlongo, Pierre, Madoui, Mohammed-Amin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7773188/
https://www.ncbi.nlm.nih.gov/pubmed/33378381
http://dx.doi.org/10.1371/journal.pone.0244637
Descripción
Sumario:The availability of large metagenomic data offers great opportunities for the population genomic analysis of uncultured organisms, which represent a large part of the unexplored biosphere and play a key ecological role. However, the majority of these organisms lack a reference genome or transcriptome, which constitutes a technical obstacle for classical population genomic analyses. We introduce the metavariant species (MVS) model, in which a species is represented only by intra-species nucleotide polymorphism. We designed a method combining reference-free variant calling, multiple density-based clustering and maximum-weighted independent set algorithms to cluster intra-species variants into MVSs directly from multisample metagenomic raw reads without a reference genome or read assembly. The frequencies of the MVS variants are then used to compute population genomic statistics such as F(ST), in order to estimate genomic differentiation between populations and to identify loci under natural selection. The MVS construction was tested on simulated and real metagenomic data. MVSs showed the required quality for robust population genomics and allowed an accurate estimation of genomic differentiation (ΔF(ST) < 0.0001 and <0.03 on simulated and real data respectively). Loci predicted under natural selection on real data were all detected by MVSs. MVSs represent a new paradigm that may simplify and enhance holistic approaches for population genomics and the evolution of microorganisms.