Cargando…
Stability of SARS-CoV-2 RNA in Viral Lysis Buffer Stored at Different Temperatures
Objectives The present COVID-19 pandemic resulted in an increased need for molecular diagnostic testing. Delay in the specimen processing and suboptimal storage of suspected samples in laboratories leads to degradation of SARS-CoV-2 viral RNA. Viral lysis buffers from RNA extraction kits have the po...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Thieme Medical and Scientific Publishers Pvt. Ltd.
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7773443/ https://www.ncbi.nlm.nih.gov/pubmed/33390676 http://dx.doi.org/10.1055/s-0040-1722551 |
Sumario: | Objectives The present COVID-19 pandemic resulted in an increased need for molecular diagnostic testing. Delay in the specimen processing and suboptimal storage of suspected samples in laboratories leads to degradation of SARS-CoV-2 viral RNA. Viral lysis buffers from RNA extraction kits have the potential to stabilize RNA. Hence, this study aimed to investigate the stability of SARS-CoV-2 RNA in viral lysis buffer at different temperatures and time periods. Materials and Methods Aliquots of samples with known SARS-CoV-2 RNA were processed in viral lysis buffers simultaneously, stored separately at 2 to 8°C and 22 to 28°C for 24 hours, 48 hours and 72 hours. SARS-CoV-2 viral RNA was extracted from each aliquot and analyzed using multiplex real-time PCR. Results SARS-CoV-2 RNA in samples placed in viral lysis buffer was stable for 48 hours at both 2 to 8°C and 22 to 28°C temperatures. Slight decline in the viral RNA quantity was found on aliquots tested after 48 hours of both the temperatures. Conclusions Viral lysis buffer maintains the integrity of SARS-CoV-2 RNA for up to 48 hours even at room temperature and supports delayed diagnosis with an overwhelming sample load in testing laboratories. |
---|