Cargando…

Development of Fast Analytical Method for the Detection and Quantification of Honey Adulteration Using Vibrational Spectroscopy and Chemometrics Tools

In this study, the Fourier transform mid-infrared (FT-MIR) spectroscopy technique combined with chemometrics methods was used to monitor adulteration of honey with sugar syrup. Spectral data were recorded from a wavenumber region of 4000–600 cm(−1), with a spectral resolution of 4 cm(−1). Principal...

Descripción completa

Detalles Bibliográficos
Autores principales: Elhamdaoui, Omar, El Orche, Aimen, Cheikh, Amine, Mojemmi, Brahim, Nejjari, Rachid, Bouatia, Mustapha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7773450/
https://www.ncbi.nlm.nih.gov/pubmed/33425426
http://dx.doi.org/10.1155/2020/8816249
Descripción
Sumario:In this study, the Fourier transform mid-infrared (FT-MIR) spectroscopy technique combined with chemometrics methods was used to monitor adulteration of honey with sugar syrup. Spectral data were recorded from a wavenumber region of 4000–600 cm(−1), with a spectral resolution of 4 cm(−1). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used for qualitative analysis to discriminate between adulterated and nonadulterated honey. For quantitative analysis, we used partial least-squares regression (PLS-R) and the support vector machine (SVM) to develop optimal calibration models. The use of PCA shows that the first two principal components account for 96% of the total variability. PCA and HCA allow classifying the dataset into two groups: adulterated and unadulterated honey. The use of the PLS-R and SVM-R calibration models for the quantification of adulteration shows high-performance capabilities represented by a high value of correlation coefficients R(2) greater than 98% and 95% with lower values of root mean square error (RMSE) less than 1.12 and 1.85 using PLS-R and SVM-R, respectively. Our results indicate that FT-MIR spectroscopy combined with chemometrics techniques can be used successfully as a simple, rapid, and nondestructive method for the quantification and discrimination of adulterated honey.