Cargando…
SCIM: universal single-cell matching with unpaired feature sets
MOTIVATION: Recent technological advances have led to an increase in the production and availability of single-cell data. The ability to integrate a set of multi-technology measurements would allow the identification of biologically or clinically meaningful observations through the unification of th...
Autores principales: | Stark, Stefan G, Ficek, Joanna, Locatello, Francesco, Bonilla, Ximena, Chevrier, Stéphane, Singer, Franziska, Rätsch, Gunnar, Lehmann, Kjong-Van |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7773480/ https://www.ncbi.nlm.nih.gov/pubmed/33381818 http://dx.doi.org/10.1093/bioinformatics/btaa843 |
Ejemplares similares
-
SECEDO: SNV-based subclone detection using ultra-low coverage single-cell DNA sequencing
por: Rozhoňová, Hana, et al.
Publicado: (2022) -
Unpaired MR-CT brain dataset for unsupervised image translation
por: Al-Kadi, Omar S., et al.
Publicado: (2022) -
Mutational signature learning with supervised negative binomial non-negative matrix factorization
por: Lyu, Xinrui, et al.
Publicado: (2020) -
Monitoring wastewater for assessing community health: Sewage Chemical-Information Mining (SCIM)
por: Daughton, Christian G.
Publicado: (2017) -
Comparison of sCIM and Other Phenotypic Detection Methods for Carbapenemase-Producing Enterobacterales
por: Hosoda, Takuya, et al.
Publicado: (2021)