Cargando…
Prediction of lncRNA-disease associations via an embedding learning HOPE in heterogeneous information networks
Uncovering additional long non-coding RNA (lncRNA)-disease associations has become increasingly important for developing treatments for complex human diseases. Identification of lncRNA biomarkers and lncRNA-disease associations is central to diagnoses and treatment. However, traditional experimental...
Autores principales: | Zhou, Ji-Ren, You, Zhu-Hong, Cheng, Li, Ji, Bo-Ya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7773765/ https://www.ncbi.nlm.nih.gov/pubmed/33425486 http://dx.doi.org/10.1016/j.omtn.2020.10.040 |
Ejemplares similares
-
Predicting lncRNA–Protein Interactions by Heterogenous Network Embedding
por: Zhao, Guoqing, et al.
Publicado: (2022) -
Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model
por: Ji, Bo-Ya, et al.
Publicado: (2020) -
Graph embedding ensemble methods based on the heterogeneous network for lncRNA-miRNA interaction prediction
por: Zhao, Chengshuai, et al.
Publicado: (2020) -
Predicting LncRNA–Disease Association by a Random Walk With Restart on Multiplex and Heterogeneous Networks
por: Yao, Yuhua, et al.
Publicado: (2021) -
Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA
por: Chen, Xing
Publicado: (2015)