Cargando…
Peptide Probes with Aromatic Residues Tyr and Phe at the X Position Show High Specificity for Targeting Denatured Collagen in Tissues
[Image: see text] The construction of potent peptide probes for selectively detecting denatured collagen is crucial for a variety of widespread diseases. However, all of the denatured collagen-targeting peptide probes found till date primarily utilized the repetitive (Gly-X-Y)(n) sequences with excl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774067/ https://www.ncbi.nlm.nih.gov/pubmed/33403269 http://dx.doi.org/10.1021/acsomega.0c04684 |
Sumario: | [Image: see text] The construction of potent peptide probes for selectively detecting denatured collagen is crucial for a variety of widespread diseases. However, all of the denatured collagen-targeting peptide probes found till date primarily utilized the repetitive (Gly-X-Y)(n) sequences with exclusively imino acids Pro and Hyp in the X and Y positions, which stabilized the triple helical conformation of the peptide probes, resulting in severe obstacles for their clinical applications. A novel series of peptide probes have been constructed by incorporating nonimino acids at the X position of the (GPO)(3)GXO(GPO)(4) sequence, while the X-site residue is varied as Tyr, Phe, Asp, and Ala, respectively. Peptide probes FAM-GYO and FAM-GFO containing aromatic residues Tyr and Phe at the X position showed similarly high binding affinity and tissue-staining efficacy as the well-established peptide probe FAM-GPO, while peptide probes FAM-GDO and FAM-GAO with the corresponding charged residue Asp and the hydrophobic residue Ala indicated much weaker binding affinity and tissue-staining capability. Furthermore, FAM-GYO and FAM-GFO could specifically detect denatured collagen in different types of mouse connective tissues and efficiently stain various human pathological tissues. We have revealed for the first time that the incorporation of nonimino acids, particularly aromatic residues at the X and Y positions of the repetitive (Gly-X-Y)(n) sequences, may provide a convenient strategy to create novel robust collagen-targeting peptide probes, which have promising diagnostic applications in collagen-involved diseases. |
---|