Cargando…
A simple correction for COVID-19 sampling bias
COVID-19 testing has become a standard approach for estimating prevalence which then assist in public health decision making to contain and mitigate the spread of the disease. The sampling designs used are often biased in that they do not reflect the true underlying populations. For instance, indivi...
Autores principales: | Díaz-Pachón, Daniel Andrés, Rao, J. Sunil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774323/ https://www.ncbi.nlm.nih.gov/pubmed/33385402 http://dx.doi.org/10.1016/j.jtbi.2020.110556 |
Ejemplares similares
-
A simple correction for COVID-19 sampling bias
por: Díaz–Pachón, Daniel Andrés, et al.
Publicado: (2020) -
A Formal Framework for Knowledge Acquisition: Going beyond Machine Learning
por: Hössjer, Ola, et al.
Publicado: (2022) -
Bias of shear wave elasticity measurements in thin layer samples and a simple correction strategy
por: Mo, Jianqiang, et al.
Publicado: (2016) -
Correction: Approach-Induced Biases in Human Information Sampling
por: Hunt, Laurence T., et al.
Publicado: (2017) -
Correction: Biomass and Abundance Biases in European Standard Gillnet Sampling
por: Šmejkal, Marek, et al.
Publicado: (2015)