Cargando…
Nuclear receptor LXRβ controls fitness and functionality of activated T cells
T cells increase cholesterol biosynthesis upon activation to generate substrates for cellular growth and proliferation. The ubiquitously expressed liver X receptor β (LXRβ) encoded by the Nr1h2 gene is a critical regulator of cholesterol homeostasis in mammalian cells; however, its cell-intrinsic ro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774588/ https://www.ncbi.nlm.nih.gov/pubmed/33373442 http://dx.doi.org/10.1084/jem.20201311 |
Sumario: | T cells increase cholesterol biosynthesis upon activation to generate substrates for cellular growth and proliferation. The ubiquitously expressed liver X receptor β (LXRβ) encoded by the Nr1h2 gene is a critical regulator of cholesterol homeostasis in mammalian cells; however, its cell-intrinsic role in T cell biology remains poorly understood. We report that ablation of LXRβ in T cells leads to spontaneous T cell activation and T lymphocytopenia. Unexpectedly, analysis of mixed bone marrow chimeric mice revealed a cell-autonomous survival defect that reduced the fitness of LXRβ-deficient effector T cells, suggesting that the heightened immune activation in mice harboring LXRβ-deficient T cells was due to impaired regulatory T (T reg) cell functionality. Indeed, we found that single-copy deletion of Nr1h2 in T reg cells disrupted activated T reg cell metabolism and fitness and resulted in early-onset fatal autoimmune disease. Our study demonstrated an indispensable requirement for T reg cell–intrinsic LXRβ function in immune homeostasis and provides a basis for immunological therapies through targeting of this receptor. |
---|