Cargando…

A Novel Nomogram Model Based on Cone-Beam CT Radiomics Analysis Technology for Predicting Radiation Pneumonitis in Esophageal Cancer Patients Undergoing Radiotherapy

PURPOSE: We quantitatively analyzed the characteristics of cone-beam computed tomography (CBCT) radiomics in different periods during radiotherapy (RT) and then built a novel nomogram model integrating clinical features and dosimetric parameters for predicting radiation pneumonitis (RP) in patients...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Feng, Tang, Ning, Cui, Yuzhong, Wang, Wei, Zhang, Yingjie, Li, Zhenxiang, Li, Jianbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774595/
https://www.ncbi.nlm.nih.gov/pubmed/33392091
http://dx.doi.org/10.3389/fonc.2020.596013
_version_ 1783630299660288000
author Du, Feng
Tang, Ning
Cui, Yuzhong
Wang, Wei
Zhang, Yingjie
Li, Zhenxiang
Li, Jianbin
author_facet Du, Feng
Tang, Ning
Cui, Yuzhong
Wang, Wei
Zhang, Yingjie
Li, Zhenxiang
Li, Jianbin
author_sort Du, Feng
collection PubMed
description PURPOSE: We quantitatively analyzed the characteristics of cone-beam computed tomography (CBCT) radiomics in different periods during radiotherapy (RT) and then built a novel nomogram model integrating clinical features and dosimetric parameters for predicting radiation pneumonitis (RP) in patients with esophageal squamous cell carcinoma (ESCC). METHODS: At our institute, a retrospective study was conducted on 96 ESCC patients for whom we had complete clinical feature and dosimetric parameter data. CBCT images of each patient in three different periods of RT were obtained, the images were segmented using both lungs as the region of interest (ROI), and 851 image features were extracted. The least absolute shrinkage selection operator (LASSO) was applied to identify candidate radiomics features, and logistic regression analyses were applied to construct the rad-score. The optimal period for the rad-score, clinical features, and dosimetric parameters were selected to construct the nomogram model and then the receiver operating characteristic (ROC) curve was used to evaluate the prediction capacity of the model. Calibration curves and decision curves were used to demonstrate the discriminatory and clinical benefit ratios, respectively. RESULTS: The relative volume of total lung treated with ≥5 Gy (V5), mean lung dose (MLD), and tumor stage were independent predictors of RP and were finally incorporated into the nomogram. When the three time periods were modeled, the first period was better than the others. In the primary cohort, the area under the ROC curve (AUC) was 0.700 (95% confidence interval (CI) 0.568–0.832), and in the independent validation cohort, the AUC was 0.765 (95% CI 0.588–0.941). In the nomogram model that integrates clinical features and dosimetric parameters, the AUC in the primary cohort was 0.836 (95% CI 0.700–0.918), and the AUC in the validation cohort was 0.905 (95% CI 0.799–1.000). The nomogram model exhibits excellent performance. Calibration curves indicate a favorable consistency between the nomogram prediction and the actual outcomes. The decision curve exhibits satisfactory clinical utility. CONCLUSION: The radiomics model based on early lung CBCT is a potentially valuable tool for predicting RP. V5, MLD, and tumor stage have certain predictive effects for RP. The developed nomogram model has a better prediction ability than any of the other predictors and can be used as a quantitative model to predict RP.
format Online
Article
Text
id pubmed-7774595
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-77745952021-01-01 A Novel Nomogram Model Based on Cone-Beam CT Radiomics Analysis Technology for Predicting Radiation Pneumonitis in Esophageal Cancer Patients Undergoing Radiotherapy Du, Feng Tang, Ning Cui, Yuzhong Wang, Wei Zhang, Yingjie Li, Zhenxiang Li, Jianbin Front Oncol Oncology PURPOSE: We quantitatively analyzed the characteristics of cone-beam computed tomography (CBCT) radiomics in different periods during radiotherapy (RT) and then built a novel nomogram model integrating clinical features and dosimetric parameters for predicting radiation pneumonitis (RP) in patients with esophageal squamous cell carcinoma (ESCC). METHODS: At our institute, a retrospective study was conducted on 96 ESCC patients for whom we had complete clinical feature and dosimetric parameter data. CBCT images of each patient in three different periods of RT were obtained, the images were segmented using both lungs as the region of interest (ROI), and 851 image features were extracted. The least absolute shrinkage selection operator (LASSO) was applied to identify candidate radiomics features, and logistic regression analyses were applied to construct the rad-score. The optimal period for the rad-score, clinical features, and dosimetric parameters were selected to construct the nomogram model and then the receiver operating characteristic (ROC) curve was used to evaluate the prediction capacity of the model. Calibration curves and decision curves were used to demonstrate the discriminatory and clinical benefit ratios, respectively. RESULTS: The relative volume of total lung treated with ≥5 Gy (V5), mean lung dose (MLD), and tumor stage were independent predictors of RP and were finally incorporated into the nomogram. When the three time periods were modeled, the first period was better than the others. In the primary cohort, the area under the ROC curve (AUC) was 0.700 (95% confidence interval (CI) 0.568–0.832), and in the independent validation cohort, the AUC was 0.765 (95% CI 0.588–0.941). In the nomogram model that integrates clinical features and dosimetric parameters, the AUC in the primary cohort was 0.836 (95% CI 0.700–0.918), and the AUC in the validation cohort was 0.905 (95% CI 0.799–1.000). The nomogram model exhibits excellent performance. Calibration curves indicate a favorable consistency between the nomogram prediction and the actual outcomes. The decision curve exhibits satisfactory clinical utility. CONCLUSION: The radiomics model based on early lung CBCT is a potentially valuable tool for predicting RP. V5, MLD, and tumor stage have certain predictive effects for RP. The developed nomogram model has a better prediction ability than any of the other predictors and can be used as a quantitative model to predict RP. Frontiers Media S.A. 2020-12-17 /pmc/articles/PMC7774595/ /pubmed/33392091 http://dx.doi.org/10.3389/fonc.2020.596013 Text en Copyright © 2020 Du, Tang, Cui, Wang, Zhang, Li and Li http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Du, Feng
Tang, Ning
Cui, Yuzhong
Wang, Wei
Zhang, Yingjie
Li, Zhenxiang
Li, Jianbin
A Novel Nomogram Model Based on Cone-Beam CT Radiomics Analysis Technology for Predicting Radiation Pneumonitis in Esophageal Cancer Patients Undergoing Radiotherapy
title A Novel Nomogram Model Based on Cone-Beam CT Radiomics Analysis Technology for Predicting Radiation Pneumonitis in Esophageal Cancer Patients Undergoing Radiotherapy
title_full A Novel Nomogram Model Based on Cone-Beam CT Radiomics Analysis Technology for Predicting Radiation Pneumonitis in Esophageal Cancer Patients Undergoing Radiotherapy
title_fullStr A Novel Nomogram Model Based on Cone-Beam CT Radiomics Analysis Technology for Predicting Radiation Pneumonitis in Esophageal Cancer Patients Undergoing Radiotherapy
title_full_unstemmed A Novel Nomogram Model Based on Cone-Beam CT Radiomics Analysis Technology for Predicting Radiation Pneumonitis in Esophageal Cancer Patients Undergoing Radiotherapy
title_short A Novel Nomogram Model Based on Cone-Beam CT Radiomics Analysis Technology for Predicting Radiation Pneumonitis in Esophageal Cancer Patients Undergoing Radiotherapy
title_sort novel nomogram model based on cone-beam ct radiomics analysis technology for predicting radiation pneumonitis in esophageal cancer patients undergoing radiotherapy
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774595/
https://www.ncbi.nlm.nih.gov/pubmed/33392091
http://dx.doi.org/10.3389/fonc.2020.596013
work_keys_str_mv AT dufeng anovelnomogrammodelbasedonconebeamctradiomicsanalysistechnologyforpredictingradiationpneumonitisinesophagealcancerpatientsundergoingradiotherapy
AT tangning anovelnomogrammodelbasedonconebeamctradiomicsanalysistechnologyforpredictingradiationpneumonitisinesophagealcancerpatientsundergoingradiotherapy
AT cuiyuzhong anovelnomogrammodelbasedonconebeamctradiomicsanalysistechnologyforpredictingradiationpneumonitisinesophagealcancerpatientsundergoingradiotherapy
AT wangwei anovelnomogrammodelbasedonconebeamctradiomicsanalysistechnologyforpredictingradiationpneumonitisinesophagealcancerpatientsundergoingradiotherapy
AT zhangyingjie anovelnomogrammodelbasedonconebeamctradiomicsanalysistechnologyforpredictingradiationpneumonitisinesophagealcancerpatientsundergoingradiotherapy
AT lizhenxiang anovelnomogrammodelbasedonconebeamctradiomicsanalysistechnologyforpredictingradiationpneumonitisinesophagealcancerpatientsundergoingradiotherapy
AT lijianbin anovelnomogrammodelbasedonconebeamctradiomicsanalysistechnologyforpredictingradiationpneumonitisinesophagealcancerpatientsundergoingradiotherapy
AT dufeng novelnomogrammodelbasedonconebeamctradiomicsanalysistechnologyforpredictingradiationpneumonitisinesophagealcancerpatientsundergoingradiotherapy
AT tangning novelnomogrammodelbasedonconebeamctradiomicsanalysistechnologyforpredictingradiationpneumonitisinesophagealcancerpatientsundergoingradiotherapy
AT cuiyuzhong novelnomogrammodelbasedonconebeamctradiomicsanalysistechnologyforpredictingradiationpneumonitisinesophagealcancerpatientsundergoingradiotherapy
AT wangwei novelnomogrammodelbasedonconebeamctradiomicsanalysistechnologyforpredictingradiationpneumonitisinesophagealcancerpatientsundergoingradiotherapy
AT zhangyingjie novelnomogrammodelbasedonconebeamctradiomicsanalysistechnologyforpredictingradiationpneumonitisinesophagealcancerpatientsundergoingradiotherapy
AT lizhenxiang novelnomogrammodelbasedonconebeamctradiomicsanalysistechnologyforpredictingradiationpneumonitisinesophagealcancerpatientsundergoingradiotherapy
AT lijianbin novelnomogrammodelbasedonconebeamctradiomicsanalysistechnologyforpredictingradiationpneumonitisinesophagealcancerpatientsundergoingradiotherapy