Cargando…
Sleep deprivation and diet affect human GH gene expression in transgenic mice in vivo
Human (h) growth hormone (GH) production studies are largely limited to effects on secretion. How pituitary hGH gene (hGH-N/GH1) expression is regulated is important in our understanding of the role hGH plays in physiology and disease. Here we assess for the first time the effect of sleep deprivatio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bioscientifica Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774756/ https://www.ncbi.nlm.nih.gov/pubmed/33112821 http://dx.doi.org/10.1530/EC-20-0354 |
_version_ | 1783630329873956864 |
---|---|
author | Jarmasz, Jessica S Jin, Yan Vakili, Hana Cattini, Peter A |
author_facet | Jarmasz, Jessica S Jin, Yan Vakili, Hana Cattini, Peter A |
author_sort | Jarmasz, Jessica S |
collection | PubMed |
description | Human (h) growth hormone (GH) production studies are largely limited to effects on secretion. How pituitary hGH gene (hGH-N/GH1) expression is regulated is important in our understanding of the role hGH plays in physiology and disease. Here we assess for the first time the effect of sleep deprivation (SD) and high-fat diet (HFD) on hGH-N expression in vivo using partially humanized 171hGH/CS transgenic (TG) mice, and attempted to elucidate a role for DNA methylation. Activation of hGH-N expression requires interactions between promoter and upstream locus control region (LCR) sequences including pituitary-specific hypersensitive site (HS) I/II. Both SD and diet affect hGH secretion, but the effect of SD on hGH-N expression is unknown. Mice fed a HFD or regular chow diet for 3 days underwent SD (or no SD) for 6 h at Zeitgeber time (ZT) 3. Serum and pituitaries were assessed over 24 h at 6-h intervals beginning at ZT 14. SD and HFD caused significant changes in serum corticosterone and insulin, as well as hGH and circadian clock-related gene RNA levels. No clear association between DNA methylation and the negative effects of SD or diet on hGH RNA levels was observed. However, a correlation with increased methylation at a CpG (cytosine paired with a guanine) in a putative E-box within the hGH LCR HS II was suggested in situ. Methylation at this site also increased BMAL1/CLOCK-related nuclear protein binding in vitro. These observations support an effect of SD on hGH synthesis at the level of gene expression. |
format | Online Article Text |
id | pubmed-7774756 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Bioscientifica Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-77747562021-01-05 Sleep deprivation and diet affect human GH gene expression in transgenic mice in vivo Jarmasz, Jessica S Jin, Yan Vakili, Hana Cattini, Peter A Endocr Connect Research Human (h) growth hormone (GH) production studies are largely limited to effects on secretion. How pituitary hGH gene (hGH-N/GH1) expression is regulated is important in our understanding of the role hGH plays in physiology and disease. Here we assess for the first time the effect of sleep deprivation (SD) and high-fat diet (HFD) on hGH-N expression in vivo using partially humanized 171hGH/CS transgenic (TG) mice, and attempted to elucidate a role for DNA methylation. Activation of hGH-N expression requires interactions between promoter and upstream locus control region (LCR) sequences including pituitary-specific hypersensitive site (HS) I/II. Both SD and diet affect hGH secretion, but the effect of SD on hGH-N expression is unknown. Mice fed a HFD or regular chow diet for 3 days underwent SD (or no SD) for 6 h at Zeitgeber time (ZT) 3. Serum and pituitaries were assessed over 24 h at 6-h intervals beginning at ZT 14. SD and HFD caused significant changes in serum corticosterone and insulin, as well as hGH and circadian clock-related gene RNA levels. No clear association between DNA methylation and the negative effects of SD or diet on hGH RNA levels was observed. However, a correlation with increased methylation at a CpG (cytosine paired with a guanine) in a putative E-box within the hGH LCR HS II was suggested in situ. Methylation at this site also increased BMAL1/CLOCK-related nuclear protein binding in vitro. These observations support an effect of SD on hGH synthesis at the level of gene expression. Bioscientifica Ltd 2020-10-13 /pmc/articles/PMC7774756/ /pubmed/33112821 http://dx.doi.org/10.1530/EC-20-0354 Text en © 2020 The authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Research Jarmasz, Jessica S Jin, Yan Vakili, Hana Cattini, Peter A Sleep deprivation and diet affect human GH gene expression in transgenic mice in vivo |
title | Sleep deprivation and diet affect human GH gene expression in transgenic mice in vivo
|
title_full | Sleep deprivation and diet affect human GH gene expression in transgenic mice in vivo
|
title_fullStr | Sleep deprivation and diet affect human GH gene expression in transgenic mice in vivo
|
title_full_unstemmed | Sleep deprivation and diet affect human GH gene expression in transgenic mice in vivo
|
title_short | Sleep deprivation and diet affect human GH gene expression in transgenic mice in vivo
|
title_sort | sleep deprivation and diet affect human gh gene expression in transgenic mice in vivo |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774756/ https://www.ncbi.nlm.nih.gov/pubmed/33112821 http://dx.doi.org/10.1530/EC-20-0354 |
work_keys_str_mv | AT jarmaszjessicas sleepdeprivationanddietaffecthumanghgeneexpressionintransgenicmiceinvivo AT jinyan sleepdeprivationanddietaffecthumanghgeneexpressionintransgenicmiceinvivo AT vakilihana sleepdeprivationanddietaffecthumanghgeneexpressionintransgenicmiceinvivo AT cattinipetera sleepdeprivationanddietaffecthumanghgeneexpressionintransgenicmiceinvivo |