Cargando…
EPySeg: a coding-free solution for automated segmentation of epithelia using deep learning
Epithelia are dynamic tissues that self-remodel during their development. During morphogenesis, the tissue-scale organization of epithelia is obtained through a sum of individual contributions of the cells constituting the tissue. Therefore, understanding any morphogenetic event first requires a tho...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774881/ https://www.ncbi.nlm.nih.gov/pubmed/33268451 http://dx.doi.org/10.1242/dev.194589 |
Sumario: | Epithelia are dynamic tissues that self-remodel during their development. During morphogenesis, the tissue-scale organization of epithelia is obtained through a sum of individual contributions of the cells constituting the tissue. Therefore, understanding any morphogenetic event first requires a thorough segmentation of its constituent cells. This task, however, usually involves extensive manual correction, even with semi-automated tools. Here, we present EPySeg, an open-source, coding-free software that uses deep learning to segment membrane-stained epithelial tissues automatically and very efficiently. EPySeg, which comes with a straightforward graphical user interface, can be used as a Python package on a local computer, or on the cloud via Google Colab for users not equipped with deep-learning compatible hardware. By substantially reducing human input in image segmentation, EPySeg accelerates and improves the characterization of epithelial tissues for all developmental biologists. |
---|