Cargando…
Application of machine learning in the diagnosis of gastric cancer based on noninvasive characteristics
BACKGROUND: The diagnosis of gastric cancer mainly relies on endoscopy, which is invasive and costly. The aim of this study is to develop a predictive model for the diagnosis of gastric cancer based on noninvasive characteristics. AIMS: To construct a predictive model for the diagnosis of gastric ca...
Autores principales: | Zhu, Shuang-Li, Dong, Jie, Zhang, Chenjing, Huang, Yao-Bo, Pan, Wensheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775073/ https://www.ncbi.nlm.nih.gov/pubmed/33382829 http://dx.doi.org/10.1371/journal.pone.0244869 |
Ejemplares similares
-
Noninvasive Blood Glucose Concentration Measurement Based on Conservation of Energy Metabolism and Machine Learning
por: Zhu, Jianming, et al.
Publicado: (2021) -
A novel nomogram for predicting survival of patients with poorly differentiated gastric adenocarcinoma
por: Zhou, Xiaolu, et al.
Publicado: (2021) -
Applications of Machine Learning to Diagnosis of Parkinson’s Disease
por: Lai, Hong, et al.
Publicado: (2023) -
Noninvasive prediction of Blood Lactate through a machine learning-based approach
por: Huang, Shu-Chun, et al.
Publicado: (2019) -
An application of machine learning to haematological diagnosis
por: Gunčar, Gregor, et al.
Publicado: (2018)