Cargando…

Antibody response to SARS-CoV-2 infection in humans: A systematic review

BACKGROUND: Progress in characterising the humoral immune response to Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) has been rapid but areas of uncertainty persist. Assessment of the full range of evidence generated to date to understand the characteristics of the antibody response, its dynamics...

Descripción completa

Detalles Bibliográficos
Autores principales: Post, Nathan, Eddy, Danielle, Huntley, Catherine, van Schalkwyk, May C. I., Shrotri, Madhumita, Leeman, David, Rigby, Samuel, Williams, Sarah V., Bermingham, William H., Kellam, Paul, Maher, John, Shields, Adrian M., Amirthalingam, Gayatri, Peacock, Sharon J., Ismail, Sharif A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775097/
https://www.ncbi.nlm.nih.gov/pubmed/33382764
http://dx.doi.org/10.1371/journal.pone.0244126
_version_ 1783630402791931904
author Post, Nathan
Eddy, Danielle
Huntley, Catherine
van Schalkwyk, May C. I.
Shrotri, Madhumita
Leeman, David
Rigby, Samuel
Williams, Sarah V.
Bermingham, William H.
Kellam, Paul
Maher, John
Shields, Adrian M.
Amirthalingam, Gayatri
Peacock, Sharon J.
Ismail, Sharif A.
author_facet Post, Nathan
Eddy, Danielle
Huntley, Catherine
van Schalkwyk, May C. I.
Shrotri, Madhumita
Leeman, David
Rigby, Samuel
Williams, Sarah V.
Bermingham, William H.
Kellam, Paul
Maher, John
Shields, Adrian M.
Amirthalingam, Gayatri
Peacock, Sharon J.
Ismail, Sharif A.
author_sort Post, Nathan
collection PubMed
description BACKGROUND: Progress in characterising the humoral immune response to Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) has been rapid but areas of uncertainty persist. Assessment of the full range of evidence generated to date to understand the characteristics of the antibody response, its dynamics over time, its determinants and the immunity it confers will have a range of clinical and policy implications for this novel pathogen. This review comprehensively evaluated evidence describing the antibody response to SARS-CoV-2 published from 01/01/2020-26/06/2020. METHODS: Systematic review. Keyword-structured searches were carried out in MEDLINE, Embase and COVID-19 Primer. Articles were independently screened on title, abstract and full text by two researchers, with arbitration of disagreements. Data were double-extracted into a pre-designed template, and studies critically appraised using a modified version of the Public Health Ontario Meta-tool for Quality Appraisal of Public Health Evidence (MetaQAT) tool, with resolution of disagreements by consensus. Findings were narratively synthesised. RESULTS: 150 papers were included. Most studies (113 or 75%) were observational in design, were based wholly or primarily on data from hospitalised patients (108, 72%) and had important methodological limitations. Few considered mild or asymptomatic infection. Antibody dynamics were well described in the acute phase, up to around three months from disease onset, but the picture regarding correlates of the antibody response was inconsistent. IgM was consistently detected before IgG in included studies, peaking at weeks two to five and declining over a further three to five weeks post-symptom onset depending on the patient group; IgG peaked around weeks three to seven post-symptom onset then plateaued, generally persisting for at least eight weeks. Neutralising antibodies were detectable within seven to 15 days following disease onset, with levels increasing until days 14–22 before levelling and then decreasing, but titres were lower in those with asymptomatic or clinically mild disease. Specific and potent neutralising antibodies have been isolated from convalescent plasma. Cross-reactivity but limited cross-neutralisation with other human coronaviridae was reported. Evidence for protective immunity in vivo was limited to small, short-term animal studies, showing promising initial results in the immediate recovery phase. CONCLUSIONS: Literature on antibody responses to SARS-CoV-2 is of variable quality with considerable heterogeneity of methods, study participants, outcomes measured and assays used. Although acute phase antibody dynamics are well described, longer-term patterns are much less well evidenced. Comprehensive assessment of the role of demographic characteristics and disease severity on antibody responses is needed. Initial findings of low neutralising antibody titres and possible waning of titres over time may have implications for sero-surveillance and disease control policy, although further evidence is needed. The detection of potent neutralising antibodies in convalescent plasma is important in the context of development of therapeutics and vaccines. Due to limitations with the existing evidence base, large, cross-national cohort studies using appropriate statistical analysis and standardised serological assays and clinical classifications should be prioritised.
format Online
Article
Text
id pubmed-7775097
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-77750972021-01-11 Antibody response to SARS-CoV-2 infection in humans: A systematic review Post, Nathan Eddy, Danielle Huntley, Catherine van Schalkwyk, May C. I. Shrotri, Madhumita Leeman, David Rigby, Samuel Williams, Sarah V. Bermingham, William H. Kellam, Paul Maher, John Shields, Adrian M. Amirthalingam, Gayatri Peacock, Sharon J. Ismail, Sharif A. PLoS One Research Article BACKGROUND: Progress in characterising the humoral immune response to Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) has been rapid but areas of uncertainty persist. Assessment of the full range of evidence generated to date to understand the characteristics of the antibody response, its dynamics over time, its determinants and the immunity it confers will have a range of clinical and policy implications for this novel pathogen. This review comprehensively evaluated evidence describing the antibody response to SARS-CoV-2 published from 01/01/2020-26/06/2020. METHODS: Systematic review. Keyword-structured searches were carried out in MEDLINE, Embase and COVID-19 Primer. Articles were independently screened on title, abstract and full text by two researchers, with arbitration of disagreements. Data were double-extracted into a pre-designed template, and studies critically appraised using a modified version of the Public Health Ontario Meta-tool for Quality Appraisal of Public Health Evidence (MetaQAT) tool, with resolution of disagreements by consensus. Findings were narratively synthesised. RESULTS: 150 papers were included. Most studies (113 or 75%) were observational in design, were based wholly or primarily on data from hospitalised patients (108, 72%) and had important methodological limitations. Few considered mild or asymptomatic infection. Antibody dynamics were well described in the acute phase, up to around three months from disease onset, but the picture regarding correlates of the antibody response was inconsistent. IgM was consistently detected before IgG in included studies, peaking at weeks two to five and declining over a further three to five weeks post-symptom onset depending on the patient group; IgG peaked around weeks three to seven post-symptom onset then plateaued, generally persisting for at least eight weeks. Neutralising antibodies were detectable within seven to 15 days following disease onset, with levels increasing until days 14–22 before levelling and then decreasing, but titres were lower in those with asymptomatic or clinically mild disease. Specific and potent neutralising antibodies have been isolated from convalescent plasma. Cross-reactivity but limited cross-neutralisation with other human coronaviridae was reported. Evidence for protective immunity in vivo was limited to small, short-term animal studies, showing promising initial results in the immediate recovery phase. CONCLUSIONS: Literature on antibody responses to SARS-CoV-2 is of variable quality with considerable heterogeneity of methods, study participants, outcomes measured and assays used. Although acute phase antibody dynamics are well described, longer-term patterns are much less well evidenced. Comprehensive assessment of the role of demographic characteristics and disease severity on antibody responses is needed. Initial findings of low neutralising antibody titres and possible waning of titres over time may have implications for sero-surveillance and disease control policy, although further evidence is needed. The detection of potent neutralising antibodies in convalescent plasma is important in the context of development of therapeutics and vaccines. Due to limitations with the existing evidence base, large, cross-national cohort studies using appropriate statistical analysis and standardised serological assays and clinical classifications should be prioritised. Public Library of Science 2020-12-31 /pmc/articles/PMC7775097/ /pubmed/33382764 http://dx.doi.org/10.1371/journal.pone.0244126 Text en © 2020 Post et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Post, Nathan
Eddy, Danielle
Huntley, Catherine
van Schalkwyk, May C. I.
Shrotri, Madhumita
Leeman, David
Rigby, Samuel
Williams, Sarah V.
Bermingham, William H.
Kellam, Paul
Maher, John
Shields, Adrian M.
Amirthalingam, Gayatri
Peacock, Sharon J.
Ismail, Sharif A.
Antibody response to SARS-CoV-2 infection in humans: A systematic review
title Antibody response to SARS-CoV-2 infection in humans: A systematic review
title_full Antibody response to SARS-CoV-2 infection in humans: A systematic review
title_fullStr Antibody response to SARS-CoV-2 infection in humans: A systematic review
title_full_unstemmed Antibody response to SARS-CoV-2 infection in humans: A systematic review
title_short Antibody response to SARS-CoV-2 infection in humans: A systematic review
title_sort antibody response to sars-cov-2 infection in humans: a systematic review
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775097/
https://www.ncbi.nlm.nih.gov/pubmed/33382764
http://dx.doi.org/10.1371/journal.pone.0244126
work_keys_str_mv AT postnathan antibodyresponsetosarscov2infectioninhumansasystematicreview
AT eddydanielle antibodyresponsetosarscov2infectioninhumansasystematicreview
AT huntleycatherine antibodyresponsetosarscov2infectioninhumansasystematicreview
AT vanschalkwykmayci antibodyresponsetosarscov2infectioninhumansasystematicreview
AT shrotrimadhumita antibodyresponsetosarscov2infectioninhumansasystematicreview
AT leemandavid antibodyresponsetosarscov2infectioninhumansasystematicreview
AT rigbysamuel antibodyresponsetosarscov2infectioninhumansasystematicreview
AT williamssarahv antibodyresponsetosarscov2infectioninhumansasystematicreview
AT berminghamwilliamh antibodyresponsetosarscov2infectioninhumansasystematicreview
AT kellampaul antibodyresponsetosarscov2infectioninhumansasystematicreview
AT maherjohn antibodyresponsetosarscov2infectioninhumansasystematicreview
AT shieldsadrianm antibodyresponsetosarscov2infectioninhumansasystematicreview
AT amirthalingamgayatri antibodyresponsetosarscov2infectioninhumansasystematicreview
AT peacocksharonj antibodyresponsetosarscov2infectioninhumansasystematicreview
AT ismailsharifa antibodyresponsetosarscov2infectioninhumansasystematicreview