Cargando…
Enzyme Inhibitory Kinetics and Molecular Docking Studies of Halo-Substituted Mixed Ester/Amide-Based Derivatives as Jack Bean Urease Inhibitors
A series of halo-substituted mixed ester/amide-based analogues 4a-l have been prepared as jack bean urease inhibitor, which showed good to excellent inhibition of enzyme activity. The role of halo-substituted benzoyl moieties and alkyl substituted anilines in urease inhibitory kinetics was also inve...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775144/ https://www.ncbi.nlm.nih.gov/pubmed/33426080 http://dx.doi.org/10.1155/2020/8867407 |
Sumario: | A series of halo-substituted mixed ester/amide-based analogues 4a-l have been prepared as jack bean urease inhibitor, which showed good to excellent inhibition of enzyme activity. The role of halo-substituted benzoyl moieties and alkyl substituted anilines in urease inhibitory kinetics was also investigated. The alkyl-substituted anilines 1a–b reacted with chloroacetyl chloride to afford intermediates 2a-b, which were then reacted with different halo-substituted benzoic acids 3a–f to prepare the title compounds 4a-l. The chemical structures of final products 4a-l were ascertained by FTIR, (1)H NMR, (13)C NMR, and mass spectra. The compound 4b showed remarkable activity with IC(50)1.6 ± 0.2 nM, better than the standard thiourea having IC(50)472.1 ± 135.1 nM. The 2-chloro-substituted phenyl ring on one side of compound 4b and 4-isopropyl-substituted benzene on the other side play an essential role in inhibition of urease activity. Lineweaver–Burk plots (kinetics study) indicated about 4b derivative as a mixed type of inhibitor. The virtual screening performed against urease enzyme (PDBID 4H9M) showed that compounds 4b and 4e have binding energies of −7.8 and −7.9 Kcal/mol, respectively. Based upon our results, it was found that derivative 4b is a highly potent urease inhibitor, better than the standard thiourea. |
---|