Cargando…
Detecting Miscoded Diabetes Diagnosis Codes in Electronic Health Records for Quality Improvement: Temporal Deep Learning Approach
BACKGROUND: Diabetes affects more than 30 million patients across the United States. With such a large disease burden, even a small error in classification can be significant. Currently billing codes, assigned at the time of a medical encounter, are the “gold standard” reflecting the actual diseases...
Autores principales: | Rashidian, Sina, Abell-Hart, Kayley, Hajagos, Janos, Moffitt, Richard, Lingam, Veena, Garcia, Victor, Tsai, Chao-Wei, Wang, Fusheng, Dong, Xinyu, Sun, Siao, Deng, Jianyuan, Gupta, Rajarsi, Miller, Joshua, Saltz, Joel, Saltz, Mary |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775195/ https://www.ncbi.nlm.nih.gov/pubmed/33331828 http://dx.doi.org/10.2196/22649 |
Ejemplares similares
-
A Large-Scale Observational Study on the Temporal Trends and Risk Factors of Opioid Overdose: Real-World Evidence for Better Opioids
por: Deng, Jianyuan, et al.
Publicado: (2021) -
Investigation of commonly used aortic aneurysm growth rate metrics: Comparing their suitability for clinical and research applications
por: Abell-Hart, Kayley, et al.
Publicado: (2023) -
Serverless OpenHealth at data commons scale—traversing the 20 million patient records of New York’s SPARCS dataset in real-time
por: Almeida, Jonas S., et al.
Publicado: (2019) -
An integrated LSTM-HeteroRGNN model for interpretable opioid overdose risk prediction
por: Dong, Xinyu, et al.
Publicado: (2023) -
Where Opioid Overdose Patients Live Far From Treatment: Geospatial Analysis of Underserved Populations in New York State
por: Abell-Hart, Kayley, et al.
Publicado: (2022)