Cargando…
Investigation of Deep-Learning-Driven Identification of Multiple Sclerosis Patients Based on Susceptibility-Weighted Images Using Relevance Analysis
The diagnosis of multiple sclerosis (MS) is usually based on clinical symptoms and signs of damage to the central nervous system, which is assessed using magnetic resonance imaging. The correct interpretation of these data requires excellent clinical expertise and experience. Deep neural networks ai...
Autores principales: | Lopatina, Alina, Ropele, Stefan, Sibgatulin, Renat, Reichenbach, Jürgen R., Güllmar, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775402/ https://www.ncbi.nlm.nih.gov/pubmed/33390890 http://dx.doi.org/10.3389/fnins.2020.609468 |
Ejemplares similares
-
Magnetic susceptibility anisotropy in normal appearing white matter in multiple sclerosis from single-orientation acquisition
por: Sibgatulin, Renat, et al.
Publicado: (2022) -
Investigation of biases in convolutional neural networks for semantic segmentation using performance sensitivity analysis
por: Güllmar, Daniel, et al.
Publicado: (2022) -
Changes of deep gray matter magnetic susceptibility over 2 years in multiple sclerosis and healthy control brain
por: Hagemeier, Jesper, et al.
Publicado: (2017) -
Susceptibility-Weighted Imaging Provides Insight into White Matter Damage in Amyotrophic Lateral Sclerosis
por: Prell, Tino, et al.
Publicado: (2015) -
Interpretable brain disease classification and relevance-guided deep learning
por: Tinauer, Christian, et al.
Publicado: (2022)